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WEAKLY COMPRESSIBLE DESCRIPTIONS OF
TURBULENCE IN COMPRESSIBLE FLOWS

Final Report for Grant F49620-97-1-0089

Robert D. Moser
Department of Theoretical and Applied Mechanics
University of Illinois, Urbana-Champaign

1 Motivation and Objectives

A large fraction of the effort in turbulence research, including numerical simulations, ex-
periments, theory and modeling, has been directed toward incompressible turbulence. This
is largely due to the simplifications that the incompressible assumption allows, and to the
belief that turbulence is in essence an incompressible phenomenon. However, many of the
flows of technological interest are compressible (e.g. external aerodynamics, propulsion
systems) leading to the requirement that our understanding of incompressible turbulence
be translated to these compressible flows. An example of this is that most commonly used
turbulence models for compressible flows are modifications of models developed for in-
compressible flows (e.g. the k- model).

Fortunately, in many flows the small-scale turbulence is nearly incompressible, albeit with
non-constant density, even though the flow itself is highly compressible. For example, in
much of the literature on compressible boundary layers (see the review by Spina et al.,
1994), differences relative to an incompressible boundary layer (up to M = 5, say) are
understood as being caused by variations in the mean density across the layer. This has long
been appreciated and is the basis of the Van Driest (Van Driest 1951, 1956) transformation
and the Morkovin hypothesis (Morkovin 1961).

These observations suggest that a formulation based on low Mach number asymptotics, in
which the turbulence is treated as weakly compressible while the mean is considered to be
fully compressible, would provide a good description of the boundary layer to quite large
Mach numbers, and a rational basis for the development of compressible turbulence mod-
els. Aided by direct numerical simulation data, the research under this grant is aimed at
developing and evaluating such weakly compressible descriptions of compressible turbu-
lence.




2 Supported Research

There were four primary research activities supported under this grant, all aimed at the
weakly compressible analysis of turbulence in compressible shear layers. These activities
are listed below:

1. Direct numerical simulation of a compressible boundary layer at Ma = 2.5

2. Low Mach-number asymptotic analysis and numerical decomposition of compress-
ible boundary layers.

3. Development and implementation of a new B-spline collocation numerical method
for the numerical simulation of compressible shear layers.

4. Numerical simulation and analysis of compressible mixing layers.

The key results of each of these activities will be described briefly below. More details are
available in the papers attached as appendices.

2.1 DNS of a Compressible Boundary Layer

Using a technique similar to that of Spalart (1989) to homogenize the streamwise direc-
tion, a Mach 2.5 compressible boundary layer was simulated. A B-spline Galerkin method
was used and the simulation was performed in a computational domain large enough to
eliminate most finite domain size effects. The simulation was used to evaluate a variety of
approximations used in the modeling of compressible boundary layers. For example, the
Strong Reynolds Analogy (Morkovin, 1961) was evaluated and found to be in disagree-
ment with the DNS data when applied in its most common form. Valid approximations
were also determined. Of particular interest to this project was the determination that the
velocity-temperature correlation was consistent with that in an incompressible boundary
layer.

The details of the simulation and the results were reported in Guarini et al (2000), a reprint
of which is included as appendix A. This research activity was also sponsored by the
NASA-Ames Research Center through a Graduate Research Fellowship for Guarini. The
efforts of the PI and computer resources at HPCMP were supported through the current
grant.

2.2 Analysis of Compressible Turbulent Boundary Layers

A weakly compressible asymptotic analysis similar to that of Zank & Matthaeus (1991)
was developed for the turbulence in a compressible boundary layer. In developing such




an asymptotic analysis, a variety of different assumptions can be made regarding scaling
of different components of the compressible fields. The direct numerical simulation data
of Maeder, Adams & Kleiser (2000) at three Mach numbers (3, 4.5 and 6) were analyzed
to determine the appropriate scalings. Further, it was determined that unlike the heat-flux
dominated approximations of Zank & Matthaeus (1991), the acoustic contributions to some
quantities (e.g. pressure fluctuations and velocity dilatation) are not negligible. To evaluate
the impact of acoustics on the turbulent boundary layer, a decomposition procedure was
devised to allow a compressible turbulent field to be decomposed into acoustic and nona-
coustic parts. This decomposition was applied to the DNS data of Maeder et al (2000). The
asymptotic analysis suggests and the decomposition analysis confirms that the acoustic
fluctuations are only weakly coupled to the nonacoustic, even at Ma = 6. The nonacoustic
equations are thus autonomous, and can be considered to be the governing equations for
the turbulence in the compressible boundary layer. These equations can thus be used as a
basis for further simulation and modeling.

The decomposition analysis and its results are described in a paper under consideration for
publication in Theoretical and Computational Fluid Dynamics (Borodai & Moser, 2000),
and a preprint is included as Appendix B.

The consequences to modeling approximations of the low Mach number asymptotics and
the autonomous nonacoustic governing equations is being explored. Several are already
clear. For example, this analysis shows that the pressure-dilatation correlation and the
so called dilatational dissipation, both terms in the equation for turbulent kinetic energy,
should be negligibly small, as has been recently observed in DNS data. The analysis also
suggests that the statistics of the compressible turbulent boundary layer should be related to
those of incompressible boundary layers with passive scalars. This connection is continuing
to be explored.

2.3 Development of Compressible Shear Layer Code

Experience with the boundary layer simulation described above indicated that the Galerkin
formulation had several practical shortcomings, the most obvious being inefficiencies in-
herent in evaluation of nonlinear terms. B-spline collocation methods do not suffer from
this shortcoming. Furthermore it was determined that they have several other desirable
features. In particular, these collocation methods have better resolution properties than the
related Galerkin methods. A detailed comparison of these B-spline collocation methods
with other high-resolution methods was conducted, and as a result, they were selected as
the basis for a new implementation of a compressible shear flow code. This code is being
used for the mixing layer simulation discussed in 2.4 below.

The results of the numerical methods evaluations are the subject of a paper being considered
for publication in Journal of Computational Physics (Kwok, Moser & Jimenez, 2000), and
a preprint of this paper is included as Appendix C.
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Figure 1: Rms of a) velocity divergence and b) temperature fluctuations in a two-
dimensional Ma, = 0.4 mixing layer. Shown are total, - - - -, nonacoustic and
----- acoustic contributions

2.4 Simulation and Analysis of Mixing Layers

The compressible shear layer code described in 2.3 is being used to perform simulations
of compressible mixing layers. Free shear layers, such as the mixing layer are known to
exhibit much stronger compressibility effects than boundary layers at similar free-stream
Mach numbers. They are thus of great interest in investigating the coupling of acoustic
fluctuations with turbulence. A decomposition analysis similar to that for the boundary
layer is being applied to the mixing layer.

Two-dimensional mixing layer simulations with convective Mach number of 0.4 and 0.8
were carried out to provide input for both the theory development and planned three di-
mensional simulations. In particular, the simulations provide critical information on the
relative importance of incompressible, acoustic and thermal parts of the velocity, tempera-
ture, pressure and density fields. For a mixing layer with equal free-stream temperatures,
we expect the thermal fluctuations to be less important than in the boundary layer, since
the mean temperature gradients are small. Indeed, for a mixing layer with Ma, = 0.4, the
thermal velocity dilatation is much smaller than the acoustic dilatation, and the thermal and
acoustic temperature fluctuations are of the same magnitude (Figure 1). Thus in this case,
the thermal component of the flow is one order higher than that for the boundary layer. This
fequires minor adjustment to the decomposition procedure. '

The acoustic and nonacoustic dilatation and temperature fluctuations were determined as
in the boundary layer starting from the equation

Ou,;,  y—1 0 ( 0T\
P é)xj B Pr Re Ba:k Mnaa:k .
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This is remarkably successful, even at quite high Mach numbers. For example at Ma, = 0.8,
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Figure 2: Contours of velocity divergence in a Ma = 0.8 mixing layer. Shown are a) the

contribution from thermal fluctuations, and b) the contribution from acoustic fluctuations.
The shock is clearly visible in b).

where in the two-dimensional mixing layer, eddy shocklets appear, this decomposition cor-
rectly isolates the shock dilatation in the acoustic field (Figure 2).

Numerical simulations of three-dimensional compressible shear layers are now under way.
These simulations are begun with initial conditions taken from the incompressible simula-
tions of Rogers & Moser (1994). In addition to providing the turbulence fields required to
apply the decomposition analysis. These new simulations allow compressibility effects to
be evaluated directly by comparison to the evolutions of the incompressible fields.

3 Other Information

Supported under this grant have been Stanislov Borodai and Wai-Yip Kwok, both graduate
students in the TAM department at University of Illinois. The work supported here was
presented at the 1997, 1998 and 1999 meetings of the Division of Fluid Dynamics of the
American Physical Society, and three papers have resulted from this work (Borodai &
Moser, 2000, Kwok, Moser & Jimenez, 2000, Guarini et al., 2000).
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Direct numerical simulation of a supersonic
turbulent boundary layer at Mach 2.5
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A direct numerical simulation of a supersonic turbulent boundary layer has been
performed. We take advantage of a technique developed by Spalart for incompressible
flow. In this technique, it is assumed that the boundary layer grows so slowly
in the streamwise direction that the turbulence can be treated as approximately
homogeneous in this direction. The slow growth is accounted for by a coordinate
transformation and a multiple-scale analysis. The result is a modified system of
equations, in which the flow is homogeneous in both the streamwise and spanwise
directions, and which represents the state of the boundary layer at a given streamwise
location. The equations are solved using a mixed Fourier and B-spline Galerkin
method.

Results are presented for a case having an adiabatic wall, a Mach number of
M = 2.5, and a Reynolds number, based on momentum integral thickness and wall
viscosity, of Rey = 849. The Reynolds number based on momentum integral thickness
and free-stream viscosity is Rep = 1577. The results indicate that the Van Driest
transformed velocity satisfies the incompressible scalings and a small logarithmic
region is obtained. Both turbulence intensities and the Reynolds shear stress compare
well with the incompressible simulations of Spalart when scaled by mean density.
Pressure fluctuations are higher than in incompressible flow. Morkovin’s prediction
that streamwise velocity and temperature fluctuations should be anti-correlated, which
happens to be supported by compressible experiments, does not hold in the simulation.
Instead, a relationship is found between the rates of turbulent heat and momentum
transfer. The turbulent kinetic energy budget is computed and compared with the
budgets from Spalart’s incompressible simulations.

1. Introduction

The study of supersonic turbulent boundary layers has primarily consisted of
experimental investigations with a few recent attempts at numerical simulation. The
experimental measurements are limited to basic turbulence quantities and by the
spatial resolution near the wall, among other difficulties. The simulations have been
hampered by large cost and low Reynolds number. The goal of the present work
was to identify similarities and differences between compressible and incompressible
boundary layers, as well as to test the applicability of Morkovin’s hypothesis and the
strong Reynolds analogy.
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1.1. Background and motivations

Though most flows encountered in nature and in aerospace applications are turbulent
or partially so, turbulence remains one of the most elusive subjects in aeronautics.
There is no general turbulence theory or model. With the addition of compress-
ibility the turbulence problem becomes even more complex. For instance, in bound-
ary layers at high Mach numbers, large temperature gradients develop between the
wall region and the outer layer. These gradients result in large variations of mean
fluid properties, such as viscosity, which result in significant changes in the Reynolds
number across the wall-normal direction. As the Mach number becomes hyper-
sonic, shocks may form, dilatation becomes important, and baroclinic terms may be
significant.

To account for the effects of compressibility, many theories have been developed
based on a weakly compressible hypothesis (see the review by Spina, Smits & Robin-
son 1994). The hypothesis is that, at moderate free-stream Mach numbers (M < 5
according to Morkovin 1962), dilatation is small and any differences from incom-
pressible turbulence can be accounted for by fluid property variations across the
layer. This has long been appreciated and is the basis of the Van Driest (1951, 1956)
transformation and the Morkovin (1962) hypothesis. Morkovin postulates that in
the weak compressibility regime normal stresses will obey the incompressible scaling
when they are multiplied by the local mean density divided by the free-stream value.
Even at moderate free-stream Mach numbers the fluctuating and turbulence Mach
numbers are small and one would not expect eddy shocklets to be a predominant
feature of the flow field. However, at higher free-stream Mach numbers the turbulent
velocity fluctuations are more likely to be supersonic leading to increased compress-
ibility effects. Further support for the weak compressibility assumption is provided by
the fact that large-scale structures are convected at 0.9U, (Spina, Donovan & Smits
1991) which results in a small relative Mach number between the large eddies and the
mean flow. Finally, another measure of compressibility, the gradient Mach number
(Sarkar 1995), is also small in the boundary layer. The gradient Mach number is
based on the velocity difference across the scale of an eddy.

The validity of the weak compressibility theories in compressible boundary layers
has been checked in a variety of experiments over the years (see these and the
references therein: Gaviglio 1987; Smith & Smits 1993; and Eléna & Gaviglio
1993). However, in most experiments the data reported have been limited to simple
turbulence quantities such as the mean and RMS velocity and temperature. Detailed
correlation statistics needed to directly check the validity of Morkovin’s hypothesis are
only available from a few experiments. The data from the direct numerical simulations
reported here provide an opportunity to evaluate these theories in more detail than
has been previously possible.

1.2. Previous simulations

Although there have been numerous experimental investigations of the compressible
turbulent boundary layer, there have been relatively few attempts at direct numerical
simulation of this flow. To date there have been three such attempts known to us: (i)
Guo & Adams (1994) and Adams et al. (1998); (ii) Rai, Gatski & Erlebacher (1995);
and (iii) Hatay & Biringen (1995).

The simulations of Guo & Adams and Adams et al. had an isothermal wall at the
laminar adiabatic wall temperature and, like the current simulations, used a method
that transformed the spatially evolving boundary layer into a parallel, streamwise
homogeneous flow. To obtain their transformed parallel shear flow, Guo & Adams
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(1994) require that the spatial mean of the periodic simulation obey the parabolized
time-mean equations. These equations contain streamwise derivatives of Reynolds
stresses which are obtained by performing simulations at different downstream sta-
tions. This approach leads to forcing terms in the mean equations that are similar
to those produced by Spalart’s approach, except that terms involving the coordinate
transformation are not present.

Guo & Adams (1994) and Adams et al. (1998) simulate boundary layers at three
Mach numbers M = 3, 4.5 and 6. In Guo & Adams, these simulations were performed
in relatively small spatial domains; in particular, for M = 3 the domain was 16 times
smaller in streamwise by spanwise area than those reported here. The effects of
these small domains is evident in their statistical results, most notably the two-point
correlations. Such small domains introduce considerable uncertainty regarding the
impact of the domain size on the dynamics of the boundary layer, though experience
with the minimal channel (Jimenez & Moin 1991) suggests that basic statistical
quantities such as turbulence intensities should be reasonably accurate. One of the
major design considerations of the current simulations was to avoid the uncertainties
associated with such small simulation domains.

Unlike the current simulations and those of Guo & Adams, Rai et al. (1995)
simulated a true spatially evolving boundary layer. They simulated a very long
streamwise domain from a laminar inlet, through transition to a fully turbulent
boundary layer. This clearly avoids any uncertainties that might be associated with
the approximate spatial growth treatment used here and in Guo & Adams, but
the cost is that the spatial domain that must be simulated is spectacularly large.
As a result, even with the extremely large problem size they were able to run (17
million nodes), Rai et al.’s resolution was over a factor of 3 coarser in the streamwise
direction (measured in wall units) than the current simulations. Such coarse resolution
introduces uncertainties that are different from those associated with the approximate
spatial growth treatment. Simulations like that reported here, which can be run with
much better spatial resolution, are useful for assessing the impact of the coarse
resolution that must be used in a simulation like that of Rai et al.

Finally, Hatay & Biringen (1995) performed a parallel-flow boundary layer cal-
culation at M = 2.5. However, the data they present suggest that the turbulence is
not being sustained. Indeed, the turbulence intensities appear to drop significantly
over the course of the simulation, It is possible that the Reynolds number of their
simulation is too low to sustain turbulence. The authors quote a Reynolds number
based on displacement thickness of Res- =~ 1000, which corresponds to a momentum-
thickness Reynolds number of Rey = 140. Fernholz & Finley (1980) call flows in the
Reynolds number range of 300 < Rey < 6000 transitional, based on an analysis of
mean velocity profiles. While their definition of transitional flows does not preclude
having sustained turbulence below Rey =~ 300, the Reynolds number in Hatay &
Biringen’s simulation is well below the lower limit of this range.

Clearly, the direct numerical simulation of a compressible turbulent boundary
layer is a difficult undertaking, in which various compromises must be made to make
the simulation practical. In the research reported here, we have pursued the most
reliable compressible boundary layer simulation that we were able to do with current
computation capabilities, choosing good spatial resolution and adequate domain
size over true spatial evolution. Such a simulation allows a much more detailed
analysis of compressibility effects in the boundary layer than has been previously
possible. The current simulation will be described and analysed in what follows,
which includes simulation details (§2), turbulence statistics (§3), Reynolds analogies
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(§4), the turbulent kinetic energy budget (§ 5) and conclusions (§ 6). The details of the
approximate spatial growth treatment are given in the Appendix.

2. Simulation details

The details of the current simulation are provided in this section. The parameters
used in the compressible turbulent boundary layer simulation are compared with
the incompressible boundary layer simulations of Spalart (1988); the incompressible
channel simulation of Kim, Moin & Moser (1987); and the compressible boundary
layer simulations of Guo & Adams (1994) and Rai et al. (1995).

2.1. Simulation method

One difficulty in performing compressible turbulent boundary layer simulations is
that the streamwise direction is inhomogeneous. This precludes the use of periodic
boundary conditions, and as a result FFTs, in this direction. Furthermore it neces-
sitates use of a long entrance length for the flow to adjust from artificial in-flow
conditions.

Several techniques have been developed to address one or both of these issues
for incompressible flow (Spalart & Leonard 1987; Spalart 1988; Spalart & Watmuff
1993; Bertolotti, Herbert & Spalart (1992); and Lund, Wu & Squires 1998). Of these
we utilize the one developed in Spalart & Leonard (1987) and Spalart (1988). Spalart
recognized that the slow growth of the boundary layer in the streamwise direction
makes it possible to treat the turbulence as approximately homogeneous in this
direction. The slow growth is taken into account by using a coordinate transformation
and a transformation of dependent variables as in multi-scale asymptotics. The result
is a modified system of equations (Navier—Stokes plus some extra terms, which we shall
call ‘slow growth terms’) that is homogeneous in both the streamwise and spanwise
directions, and which represents the state of the boundary layer at a given streamwise
location (or, equivalently, a given thickness). Using Spalart’s method, the boundary
layer can be simulated separately at each streamwise station. A detailed description
of this method and the modified set of equations can be found in the Appendix.

The resulting equations are solved using a mixed Fourier-spectral and B-spline-
Galerkin method (Guarini 1998). The dependent variables (specific volume, ¢ =
1/p; momentum, m = pu; and pressure, p) are expanded in terms of a Fourier
representation in the horizontal directions and a third-order (quadratic) B-spline
representation in the wall-normal direction. The Fourier directions are de-aliased
using the 3/2-rule, where all nonlinear terms are calculated using 3/2 times the
number of modes used to advance the solution. Quadratic nonlinearities are fully de-
aliased using this rule while higher-order nonlinearities are only partially de-aliased.
B-splines have a variety of good numerical properties, and have been used successfully
in the incompressible pipe flow simulation of Loulou (1996) and the compressible jet
of Rao (1997). B-splines have high resolving power, allow easy implementation of
boundary conditions, and allow the use of stretched grids. More details on B-splines
may be found in: De Boor (1978), Kravchenko, Moin & Moser (1996), and Shariff
& Moser (1998). Their use in the present work is described in Guarini (1998). In
the wall-normal direction, Giles’ (1989, 1990) second-order non-reflecting boundary
conditions are used at the free-stream boundary and adiabatic no-slip boundary
conditions are used at the wall. This combination of splines and Fourier methods
produces a very accurate numerical method. For the time discretization the mixed
implicit/explicit method of Spalart, Moser & Rogers (1991) is used. All terms are




Supersonic turbulent boundary layer 5

Sim. M Reg N, X N, Ly x L} Axt x Azt

S1 0.0 225 —_— — —

S2 00 300 85 x 64 2680* x 670 31.5t x 10.5*
S3 00 670 171 x 128 4900 x 1225% 28.7t x 9.50t
S4 00 1410 288 x 213 11400* x 2850* 39.61 x 13.4*
KMM 00 — 192 x 160 2300% x 1150* 12.0* x 7.00*
GA 3.0 3015 192 x 144 527* x 300* 2.74% x 2.08%
GA 4.5 2618 180 x 144 260t x 155% 1.44% x 1.08%
GA 6.0 2652 180 x 128 229 x 137t 1.27* x 1.07*
Rai 225 6000 971 x 321 full spatial 27.0% x 10.4%

Present 2.5 1577 256 x 192 2269% x 1134+ 8.86% x 5.91*

TaBLE 1. Comparison of parameters used in the incompressible simulations of Spalart (1988) (S1-54)
and Kim et al. (1987) (KMM); the compressible simulations of Guo & Adams (1994) (GA) and
Rai et al. (1995); and the present simulation.

treated explicitly except for the highest wall-normal derivative in the viscous, pressure
gradient, and ‘acoustic coupling term’

om
vapa—xj, @.1)

that appears in the pressure equation. In the implicit treatment, non-constant coeffi-
cients that vary in the horizontal directions cannot be easily treated. Both the viscous
and acoustic coupling terms are split into a term with coefficients (viscosity and op
respectively) varying in the wall-normal direction only, which is treated implicitly,
and the remainder, which is treated explicitly.

2.2. Choice of parameters

A turbulent boundary layer at a Mach number of 2.5 and a Reynolds number based
on displacement thickness of Re;- = 6258 was simulated. This results in a Reynolds
number based on momentum integral thickness and wall viscosity of Rey ~ 849. The
Reynolds number based on momentum integral thickness and free-stream viscosity
was Rey ~ 1577. The Mach number was chosen because of the availability of
experimental data and because it is in a range where we might begin to see some
compressibility effects.

There are two important sets of parameters, the grid size (N, x N, x N,) and
the domain size (L, x L, x L;), that determine the overall quality/accuracy of the
simulation. The coordinate system is oriented such that the x-, y-, and z-directions
are the streamwise, wall-normal, and spanwise directions, respectively (in this paper
we use a mixed index or symbol notation where x, x;, and x3 correspond to x,
y, and z, respectively). The current simulation has 256 x 209 x 192 (N, x N, X N;)
Fourier-B-spline modes and a domain size of 2269% x 875" x 1134* (L, x L, x L,),
where y* = yu,/v,. Here v, is the kinematic viscosity at the wall and u, is the
friction velocity (t,,/pw)"/?, where 7,, and p,, are the shear stress and density at the
wall, respectively. The domain and grid parameters were selected to provide sufficient
resolution in a domain that is large enough to eliminate most finite domain size
effects. That this is the case is demonstrated below.

One way to assess the adequacy of the resolution and domain size is by comparison
to DNS of similar flows. The resolution and domain size used in the current simulation
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FIGURE 1. One dimensional energy spectra E,,,. Plotted versus (a) k. at y* = 4; (b) k at y* = 80;
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are compared with the incompressible boundary layer simulations of Spalart (1988)
(S1-S4), the incompressible channel flow of Kim et al. (1987) (KMM) and the
compressible boundary layer simulations of Guo & Adams (1994) (GA) (table 1).
The resolution required in the M = 3 simulation of Guo & Adams was significantly
finer than that of the incompressible simulations or the present simulation. The
reason for Guo & Adams’ extremely fine resolution is not clear. However, the need
for increased resolution of the current simulation relative to KMM is due to sharp
density gradients present in the compressible flow. KMM is used for comparison
because their resolution is better than Spalart’s simulations, as determined by the
drop in energy spectra. The adequacy of the spatial resolution was confirmed by
examining the spectra, where E,,, is the energy spectrum for the velocity component
u;. Examples are shown in figure 1. These spectra and those at other y-locations suggest
the resolution is adequate. Another indication of the adequacy of the resolution is
the value of kjun, where k., is the maximum wavenumber in x and 7 is the
local Kolmogorov scale. The maximum and minimum of this value in the current
simulation are 1.6 and 0.5, respectively, which is considered adequate. For comparison
the simulation of Kim et al. (1987) had values of 1 and 0.4 for the maximum and
minimum, respectively.
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The periodic domain size of the current simulation was selected to ensure that the
streamwise and spanwise two-point correlations are nearly zero for large separations,
where the two-point correlation for the velocity component u; is Q... As is evident
in figure 2, the near-wall correlations are indeed near zero for large separations,
though they could be better for the streamwise component. However, far from the

wall (y+ = 150) low-level large-scale coherence is evident in the correlation, perhaps
due to acoustics as suggested by Coleman, Kim & Moser (1995).

In the wall-normal direction, the B-splines were defined on a non-uniform set of
knots (grid points) which is given by

b= (A¥mas = Avin) | R 4 (¢l — 1)/ 4 Dl )
Nk Nk

where « = 0.14, N, = 1.09, Ny = 207, Ay = 1.0, and Ay, = 110.0. With this

distribution there were 13 grid points in the first 9 wall units, including the grid point

at the wall. The minimum grid spacing in the wall-normal direction was 0.48% wall

units while the maximum was 7.8% wall units at the free-stream boundary, which was

located at y* = 875.
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2.3. A note on averaging

In the results that follow, both Reynolds and Favre averaging are used depending
on simplicity of presentation and conventions used in the papers to which we are
comparing. In each case care will be taken to distinguish between the two. _

The Reynolds average of f over the x- and z-directions will be denoted by f, and
fluctuations about this mean will be denoted by f’. The Favre average over the x-
and z-directions, 7, is a density-weighted average:

-4 23)
Fluctuations about the Favre average will be denoted by f”.

2.4. The turbulent Mach number

One convenient measure of the turbulent compressibility effects is the fluctuating
Mach number, M’, which is just the RMS fluctuation of the Mach number. A similar
quantity is the turbulent Mach number given by

@)
a

M, = 2.4)
Morkovin (1962) suggests that the turbulence is only weakly affected by compressibil-
ity provided M’ < 0.2 (0.3 according to Spina et al. 1994). Despite the relatively low
Mach number, the peak values of M" and M, in the simulation are approximately 0.3
(figure 3). Nevertheless, as will be shown in § 3, Morkovin’s den51ty scaling and the Van
Driest transformation still apply The shoulder in figure 3 is at (M2)"/2 ~ 0.25, while
the experimental data shown in Spina et al. (1994), for M, = 2.3 and Rey = 4700,
have a shoulder at (M72)!/2 ~ 0.20. The reason for the difference is most likely the
neglect, in the experiments, of the spanwise velocity in calculating the Mach num-
ber. As one can see in figure 3, the turbulent Mach number is consistent with the
experimental value of 0.2 when the spanwise velocity component is not included.

A measure of intrinsic compressibility is the ratio of mean-square dilatation fluc-
tuations to mean-square vorticity fluctuations:

(Oui/ 0x;)(0u;/ 0x )/ 0. (2.5)
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This ratio measures the level of compressibility, as given by dilatation, relative to the
turbulent motion, as given by enstrophy. In the simulation we find that this ratio is
approximately 5 x 10~* throughout the boundary layer.

3. Turbulence statistics

In this section, several turbulence statistics are examined to evaluate their consis-
tency with accepted experimental and computational results.

To obtain statistics, averages are computed over the streamwise and spanwise
directions of each field; then an ensemble average over 55 fields spanning 31.33 time
units was calculated. Time is non-dimensionalized by 8°/a,. The flow was determined
to be stationary when several quantities (Cy, 0, 4., Rey, and T,) began to oscillate
about a mean value.

3.1. Mean flow
The skin friction coefficient is defined as

2 _
Ug Pw
Cf—Z(Uw) P 3.1)
In the simulation the skin friction coefficient was found to be C; = 0.00282. There
are very few experimental studies at the low Reynolds number of the simulation.
However, the simulation compares favourably with the experimental results compiled
by Coles (1954) and the skin friction correlation given in Bardina, Huang & Coakley
(1997) based on the Van Driest II skin friction transformation (figure 4).

The Van Driest transformed velocity, U,, is plotted in wall units in figure 5. U, is
defined as

U
U, = / (T,/T)*dU. (3.2)
0

Experiments have shown that U, satisfies the same scaling laws as the mean streamwise
velocity in incompressible flow. On the plot we have included the linear sub-layer
relation, U} = y*, the standard log-law, and a composite profile that consists of
Reichardt’s (1951) inner layer profile and Finley’s wake function (Cebeci & Bradshaw
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where § is the y location at which U.(y = 6) = U,_, C, = —(1/k)In(x) + C, n; = 11,
and b = 0.33. This profile is used in the Appendix to calculate the slow-growth terms.
In addition, the more commonly cited Coles’ profile (Coles 1956) is shown. In the
region of 30 < y* < 70, the simulation data fall on the log-law curve, where we
have chosen the constants k = 0.40 and C = 4.7 for the plot; ¥ was determined
by finding the minimum of y+(dU}/dy*) as a function of y*. Using this value and
the location of the minimum, C was then calculated. These values compare well
with those of Spalart (1988), and x is within the range of values quoted in the
literature (see Smits & Dussauge 1996). At low Reynolds numbers the log-region
becomes vanishingly thin making the determination of x and C difficult. There is also
some disagreement as to whether or not the values are Reynolds number dependent
at the low Reynolds number of the simulation (Spalart 1988). The value of IT
for the time-averaged profile was IT = 0.25, determined from the equations in the
Appendix. Reichardt’s ‘basic’ profile with Finley’s wake function gives a rather good
representation of U, throughout the boundary layer. Since this is the profile shape
assumed when computing the slow streamwise derivatives (see the Appendix), the
good agreement implies that the assumed profile does not introduce a significant
error in the computation of these derivatives. It is interesting to note that if we use
U rather than the transformed velocity U, the values of ¥ and C are 0.477 and 2.64,
respectively, which are quite different from the incompressible values.

3.2. RMS velocity, pressure, and vorticity

When normalized by u, the turbulence intensities from the current compressible
boundary layer are lower than the intensities from the incompressible boundary
layer (figure 6a). Morkovin (1962) predicted that scaling by the square root of
the mean density profile should collapse RMS data for the streamwise velocity
component and possibly the spanwise and wall-normal components. When this scaling
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FIGURE 6. RMS velocity profiles plotted versus y/d, (a) scaled by 1/u,, and (b) scaled by \/(5/pw)/th:-
Lines correspond to the compressible simulation and symbols are used for Spalart’s incompress-
ible simulations: , streamwise velocity component; ----, wall-normal velocity component;
—-—, spanwise velocity component; +, Spalart (Re, = 1410); *, Spalart (Rey = 670).

is used there is good agreement for all three velocity components (figure 6b). In
the experiments good collapse is obtained for the streamwise component but the
experiments are inconclusive with respect to the collapse of the other two components
(Smits & Dussauge 1996). Smits & Dussauge (1996) attribute this to both the
difficulty in measuring the spanwise and wall-normal components and the scarcity of
measurements of these two components.

There are two additional points which need to be mentioned in connection with
figure 6. The first is that Rey, based on local viscosity in the compressible simulation,
varies across the boundary layer from 849 to 1577. Spalart’s (1988) two simulations
at Res = 670 and 1410 span this range. This is important becausg in y/J units,
the location of the peaks in the intensities moves toward the wall, since it remains
approximately fixed in wall units. Further, Spalart showed that at these low Reynolds
numbers, the magnitude of the peaks in intensities increases with Reynolds number.
The second issue concerns the choice of 6 in figure 6. As discussed by Spalart, the
collapse of the data over a wide range of Reynolds numbers is sensitive to the choice
of §. In making our comparison, we used a definition of & based on the composite
profile of (3.3) and made no effort to find a definition that would better collapse the
data. This might account for the differences that are evident at y > 0.656.

In the compressible simulation the pressure fluctuations, when scaled by p,u2,
are larger than those found in the incompressible simulations through most of the
boundary layer (figure 7). The peak pressure fluctuations are larger than Spalart’s
Rey = 670 simulation and occur at nearly the same location. The value of the RMS
pressure at the wall and at the peak are (pl,, Jw/(pwt?) = 2.7 and (P, )max /(Pwt2) = 3.0,
respectively. In the free stream the pressure fluctuations approach (p),)w/(0wti2) =~
0.47. This is comparable to the value of the radiated pressure measured by Laufer
(1964) Of (B},0)oo/ (pt2) = 0.4,

RMS vorticity profiles for the present simulation agree very well with those found
in Spalart’s incompressible simulations when normalized by u?/v,, (figure 8) and
plotted in wall units, with the compressible results being slightly larger than the
incompressible simulations away from the wall. Note that from Spalart’s data it is
clear that near the wall the maximum may be Reynolds number dependent. The
near-wall RMS vorticity is shown plotted in wall units here because the wall scaling
is known to (approximately) collapse such profiles for different Reynolds numbers in
incompressible flows, and indeed in y/é units our data did not collapse with that of
Spalart’s.
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3.3. Reynolds shear stress
Reynolds averaging the momentum equation,

opy; p 1 a‘EU
— = ; 34
ot { vt} — T Re ox;’ 34
we get
0pil; - op 1 0%
—é—t—-:-—- {puu,+pu u' _6_x,+ﬁ5}i— (35)
The sum of the Reynolds shear stress and mean shear stress terms is
0 — 1 |_0f ouy  oul
— — |f— 1ty | —+=== . 3.6
0x, { P u2+R 8x2+# 6x2+6x1 (36)

In incompressible boundary layers a constant total stress region is observed near the
wall. The constant-stress region is consistent with the law of the wall and is also
present in the current simulation (figure 9). The constant-stress region extends to 30
or 40 wall units above the wall.

As was the case for the turbulence intensities, w'v’ agrees with the incompressible
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FIGURE 9. Simulation results for Reynolds stress, mean shear stress, and total stress versus yu,/v,:
, total shear stress; -------- , Reynolds stress (pu]u}); —-—, mean shear stress (fi(0%/dy));
———~, stress correlations (¢ [(6u'/dy) + (0v'/dx)]).
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DNS; +, Spalart (Rey = 1410); *, Spalart (Rey = 670).

, compressible

results when scaled by the local mean density (figure 10). This agreement is not as
close as for the intensities, but this is primarily due to the square root in the definition
of the intensities.

4. Reynolds analogies

For incompressible laminar boundary layers, the similarity of the momentum and
energy equations allows one to approximately relate quantities pertaining to heat
transfer with quantities pertaining to momentum transfer. O. Reynolds discovered
this principle in its simplest form. The ‘Reynolds analogy’ has been extended with
additional approximations to the compressible and turbulent cases. Morkovin (1962)
suggests that a Reynolds analogy might apply to compressible turbulence, a concept
known as the ‘strong Reynolds analogy (SRA)’. More recently, other expressions of
a Reynolds analogy have been formulated by several authors (Gaviglio 1987 and
Huang, Coleman & Bradshaw 1995), and these will also be studied below.

4.1. The strong Reynolds analogy

To investigate the validity of the strong Reynolds analogy, and its consequences, a
brief review of its derivation and a critical examination of the underlying assumptions
are given in this section. The analogy is based on the observation that the transport
equations for mean velocity and mean total enthalpy, h, = C,T +u?/2, for a stationary,
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have the same form if the Prandtl number is 1. If the Prandtl numbers are different,
the equations are still of the same form provided the molecular diffusivity can be
neglected, which is true in a turbulent boundary layer, except very near the wall. The
two equations, however, have different boundary conditions.

The total temperature, T;, is defined by the relationship h, = C,T;. If one assumes
that gradients of mean total temperature and velocity in x can be neglected and
further (without justification) that

TII — Cu”, (42)
t

one can eliminate the turbulent terms in the mean transport equations and solve for
T, in terms of iy,

T,= Ciiy +D. (43)
This result was first stated in a slightly different form by Young (1953)t and later
by Morkovin (1962), who called assumption (4.2) the strong Reynolds analogy. Since
8T,/dy = 0 at an adiabatic wall and the velocity gradient, dii; /0y, is non-zero at the
wall, it follows that the constant, C, must be zero. This implies that the mean total
temperature is constant with value T,, and the total temperature fluctuations are
zero. In the current simulation the maximum deviation of the mean total temperature
from a constant is about 7%, thus approximately verifying the result for the mean.
However, in the simulation, RMS total temperature fluctuations are comparable in
magnitude to the static temperature fluctuations (see figure 11), and are thus not
negligible. The discussion that follows addresses the validity of (4.2), with C =0, and
the relationships derived from it.

The fact that measured total temperature fluctuations are not negligible was rec-
ognized by Morkovin (1962). Nonetheless, relations derived assuming that they are
negligible have been widely used in the literature. These relations can be obtained by
writing the definition of total temperature and subtracting its Favre mean:

TATAR T4 T4

2 5 4.4)
By retaining only the terms that are linear in the fluctuations, and assuming that
fiyu] > touy and #u] > dauy, we get

C,T! = C,T" + iuntf]. (4.5)

So far, the approximations made are excellent. One can verify this by considering
the correlation coefficient Ry rr_rv) between streamwise velocity fluctuations and the
difference between total and static temperature fluctuations. The correlation coefficient
differs from unity by less than 0.9% for y/é > 0.05, showing that (4.5) is very accurate.

In Morkovin’s analysis, the SRA is invoked to argue that the total temperature

T/ = CT" + il +

t Young calls (4.3) and (4.2) solutions to the equations. This terminology is imprecise and attaches
too much legitimacy to (4.3) and (4.2). We prefer not to identify the two as solutions, but rather to
say that the assumption (4.2) implies (4.3).
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fluctuations are negligible compared to the static temperature fluctuations, and thus
(4.5) becomes

C,T" + iy ~ 0, (4.6)

which is not valid, as discussed above (figure 11). Substituting yR/(y — 1) for C, and
defining the Mach number, M,:

Mf = yR—T’ 4.7)
(4.6) can be rewritten:
TII u/l
F = —(y— 1)M2 . (4.8)

The (questionable) relations, (4.6) and (4.8), between T” and u{ have several statistical
consequences which are given by

/2
(r ).LT ~ 1, (4.9a)
(y = DYM2(w)\2 /i
—R llTn ~ 1 (4.9b)
pr, = £A5@T/0y) (4.9¢)
pu T"(dily/0y)

These are three of the five SRA relationships Morkovin (1962) presented. Equations
(4.9a) and (4.9b) are direct consequences of (4.6), whereas (4.9¢) is obtained by
multiplying (4.6) by puj, averaging, and assuming that

() /()

which comes from the mean total temperature equation when it is assumed that T,
is constant and that nonlinear fluctuating terms and velocity components other than
i} are small.

From the simulation results we see that equation (4.9a) is satisfied for y/é < 0.6
(figure 12). However, in the same region, (4.9b) and (4.9¢) are not satisfied (see figures
13 and 14). The correlation Ry~ is approximately 0.6 through most of the boundary
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FIGURE 12. Test of the strong Reynolds analogy, as expressed by (4.9a).
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FiGgure 13. Correlation coefficient, —R,»7v, versus y/é. (a) Comparison with compressible experi-
ments: , time average of DNS; x, Debieve (M = 2.3, Rey = 5650) (Gaviglio 1987); *, Debieve
(M = 2.3, Rey = 5650) (Gaviglio 1987); +, Dussauge (M = 1.7, Re, = 5700) (Gaviglio 1987); o,
Smith & Smits (1993) (M = 2.9, Rey, = 77600). (b) Comparison with incompressible experiments:
, time average of DNS; x, Fulachier (Reg = 5000) (Gaviglio 1987); *, Rey (Gaviglio 1987);
+, Subramanian & Antonia (1981) Rep = 990; o, Subramanian & Antonia (1981) Rey = 7100;
~-——, incompressible simulation of Bell & Ferziger (1993).

1.5
1.0 K T X% 5
XX
Pr, XX /% x
0.5}
0 0.2 014 0.6 0:8 1.0

yié

FiGURE 14. Turbulent Prandtl number, Pr,, versus y/é: , time average DNS data; x,
incompressible heated wall simulations of Bell & Ferziger (1993).

layer, and the turbulent Prandtl number is about 0.7 except near the wall (y/6 < 0.2)
where it is near 1. The current results for the velocity-temperature correlation are in
disagreement with the available data from compressible boundary layer experiments
(figure 13), which show the correlation to be close to 1 (approximately 0.9), in
agreement with predictions of the SRA.
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The reason for this disagreement between simulations and experiments is not clear,
but is of great interest. The speculations of Gaviglio (1987) that the large correlation
values observed in experiments are due to acoustic waves suggests the possibility
that the acoustics are somehow different (weaker) in the simulations. However, tests
for numerical artifacts (e.g. damping) in the simulated acoustics did not reveal any
problems, and our radiated sound pressure magnitude compares well with that of
Laufer (1964). Another interesting observation is that in the current simulations
both the velocity-temperature correlations and the turbulent Prandtl number agree
reasonably well with data from incompressible boundary layers, both experimental
and computational (see figures 13b and 14). This might be expected, given the weak
compressibility of the boundary layer at this Mach number. This agreement at least
makes plausible the proposition that the current simulation results are physical,
despite disagreement with compressible experiments. The basis for comparison with
the incompressible heated wall in figure 13(b) is that the heated wall produces a
temperature gradient of the same sign as that obtained in the current simulation.

Further analysis suggests that the key to the discrepancy is the magnitude of
the total temperature fluctuations. In the experiments, it is total temperature and
momentum that are measured directly, with other quantities computed using several
approximate relations. By using these relations in the simulation data it was found
that (a) they yield accurate values for the derived quantities; and (b) when the total
temperature fluctuations in the simulations are reduced by a factor of 2, the relations
used in the experiments yield correlations Ry consistent with the experiments.
The total temperature fluctuations in the experiments are indeed approximately a
factor of 2 lower than the simulations (Kistler 1959). A factor of 2 error in the
total temperature is much larger than the uncertainties in either the experiments or
the simulation, so there is clearly something wrong with one or the other (or both).
A potentially useful approach to settling this question would be to use a physical
model of the experimental probes in the simulations, and process the resulting signals
as is done in the experiments, to see if results consistent with the experiments are
recovered. Until this issue is resolved, it would be wise to view both the experimental
and computational results on these quantities with some suspicion.

Of the three relations shown, only the RMS relation (4.94a) is very nearly satisfied.
The question arises as to how this relationship can be satisfied even though total
temperature fluctuations are of the same order as temperature fluctuations. This
success of (4.9a) can be explained by rearranging the definition of total temperature
fluctuations (4.5) as follows:

T2+ T2 - 2T/ T" _
72 -

)
(y — 12MAEL. (@.11)
uj

The condition that must be satisfied for (4.9a) to be valid when total temperature
fluctuations are not neglected is

T2 T —-2T/T"
T2 T2 ’
which the simulation data confirms (figure 15). While all the terms on the left-hand
side of (4.11) are of the same order, in the inner portion of the boundary layer the

term on the left-hand side of (4.12) is nearly a factor of 6 greater than the term on
the right. So the success of (4.9a) is due to a relationship between total and static

(4.12)
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FiGure 16. Comparison of Ry« from (4.15) to simulation data: , time average of DNS data;

—--~——, profile predicted by (4.15); —-—, profile predicted by the modified Reynolds analogy of
Huang et al. (1995).

temperature fluctuations rather than the assumption of negligible total temperature
fluctuations.

Gaviglio (1987) has shown that fluctuations in total and static temperature can be
directly related to the correlation coefficient Ryr« if (4.9a) is assumed to be valid.
The RMS of the linearized definition of total temperature, (4.5), is

. s | B B = s
(Tt//2)1/2 = (Tuz + _Elz_u/llz + 261(T//Z)I/Z(u/{Z)I/ZRu,{T”) , (4.13)
14 4
where the last term was written in terms of Ryr». Now if we say that (4.9a),
(T = 2 )", (4.14)
P
is empirically valid then (4.13) becomes
Ru’l’T” = FTE — . (4.15)
As expected in the case of negligible total temperature fluctuations this equation
reduces to Ryr» = —1. The value of Ryr predicted by (4.15) agrees well with the

actual values (figure 16).
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Figure 17. Comparison of —R,; 7+, =Ry 1, and —Ry versus y/d: s —Rur; ====, =Ry1/;
——, =Ry ; symbols showing the experimental results for —R, 10 are the same as in ﬁgure 13a.

@

Since for incompressible flow —Ry, 7 is significantly less than unity, the correlation
coefficient between streamwise momentum fluctuations and temperature fluctuations,
—Ryy, 1, will also be much less than unity for 1ncompre551ble flow (the two are in fact
equal) For the compressxb]e simulation, however, —R,;r is much closer to 1 (ﬁgure
17). This is because —R,; 1 is a weighted average of R;7 and Ry, and Ry is very
close to 1 (dashed curve in figure 17) since pressure ﬂuctuatlons may be assumed
to be small compared to density and temperature fluctuations in the equation of
state (Lele 1994). The contribution of Ry to the weighted average pushes —Ry; 1
towards unity. The close correlation between streamwise momentum and temperature
fluctuations may indicate a greater similarity between the transport equations for
turbulent momentum and heat transport than in the incompressible case, which may
be due to a reduction in the importance of the pressure gradient term.

4.2. ‘Modified Reynolds analogies’

Both Gaviglio (1987) and Huang et al. (1995) point out that for flows with non-
adiabatic boundaries the agreement between (4.9a) and measurements is poor. Both
authors propose new relationships between temperature and velocity fiuctuations
which have been called ‘modified’ Reynolds analogies. Since the agreement of this
relation with the current adiabatic wall simulations is not perfect either, we now assess
these modified Reynolds analogies. The modified Reynolds analogies of Rubesin
(1990), Gaviglio (1987) (GSRA), and Huang et al. (1995) (HSRA) all have the form

(T T 1
(y — VM2 25 (1 —a(@T,/0T))

If a =0 and ¢ = 1 then the standard SRA is obtained. For all the modified
expressions a = 1. Rubesin used ¢ = 1.34. Gaviglio and Huang et al. use the mixing
length hypothesis to obtain ¢ = 1.0 and ¢ = Pr,, respectively. The difference between
the derivation of Gaviglio and Huang et al. is that Gaviglio assumes that the mixing
lengths for temperature and velocity fluctuations are equal. In figure 18 the ratio of
the left-hand side of (4.16) to the right-hand side is plotted for the SRA, GSRA, and
HSRA. The version presented by Huang et al. (1995) is in excellent agreement with
the data throughout the boundary layer. The value of Ry~ that is predicted by the
modified analogy of Huang et al. can be derived by substituting equation (4.16), with

(4.16)
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FIGURE 18. Plot of the Strong Reynolds analogy, and the modified Reynolds analogies of Gaviglio
(1987) and Huang et al. (1995): ,SRA; ===-, GSRA; —-~—, HSRA; :+------ , Rubesin.

¢ = Pr,, into (4.13) to obtain
(T2/T" 1] _55( _o%
2pPr(l—0T,/0T) 2 oT
The profile for R,7+ predicted by (4.17) agrees well with the simulation data (figure
16).
Why does the expression of Huang et al. work so well? Substituting the definition
of the turbulent Prandt] number, (4.9¢), and the derivative of the total temperature,

oT, oT 1y om

pustiat A N T St 4,18

T e oy (“4-13)
into (4.16), with ¢ = Pr,, we obtain

) =14 Ry~ (4.17)

AT (4.19)
(T//2)1/2 (ulll2)l/2
This relationship expresses an analogy between the rates of turbulent heat and
momentum transfer normalized by the property that is transported. We may divide
through by the RMS of the wall-normal velocity fluctuations to obtain a relationship
between the correlation coefficients Ryyr» and Ryt

Ryre = =Ry, (4.20)

where it is assumed that the correlations p'uju] and p'ujT” are small compared to

pusu| and puy T". The simulation results indicate that the two correlation coefficients

are very nearly equal throughout the boundary layer (figure 19).

4.3. Turbulent Prandtl number

Morkovin was aware that total temperature fluctuations are not negligible compared
to temperature fluctuations and stated that another set of expressions could be
developed by assuming that pu} T’ is much smaller than pu;T". In the lower half of
the boundary layer (y/6 < 0.5) this is a good assumption (figure 20).

Using this assumption, an expression can be developed for the turbulent Prandtl
number. Multiplying (4.5) by pu5 and averaging gives

DlTT = pill T + %pu’z’u'l’. @21
P
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FiGure 19. Comparison of Ryyrs and —Ryz,» versus y/8:——, Rygpn; —===, =Ry
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FIGURE 20. Plot of the ratio puj T, /puj T" versus y/3.

Neglecting pu ;' relative to pujT" yields

P _ % 4.22)
oy T Uy
Substituting (4.18) into (4.22) gives
- ~ | =1
Ul (0T /oy) _ oT <6T 6T>
Pr, = — — -] . 4.23
' G T @moy) 3y \ay 3y 42

This prediction agrees with the simulation data in the inner portion of the boundary
layer, but as the boundary layer edge is approached the agreement becomes poor
(figure 21).

5. Turbulent kinetic energy budget

For the benefit of those formulating turbulence models, the budgets for both
the Reynolds stresses and the turbulent kinetic energy have been calculated. In
this section, the turbulent kinetic energy budget is presented and compared with
the incompressible simulations of Spalart (1988). The Reynolds stress budgets are
presented in Guarini (1998). Favre averages are used in the analysis to simplify the
resulting equations.
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FIGURE 21. Turbulent Prandtl number Pr, vs. y/d: ——, time average DNS data;
—===, Pr, from (4.23).

The turbulent kinetic energy is defined as:

1 pul'u;
2 p’

and the turbulent kinetic energy equation is, after assuming homogeneity in the x-
and z-directions, given by

=3

k=

(5.1)

0, - 0 ,_-
—(pk)+t,—(pk)=P+T+IT+D—-¢+V,. (5.2)
ot 0x;
The symbols are defined as
P = pu"u’z’g (5.3a)
10—
T = —5'6?2’)“ ulu;, (5.3b)
0 — 0wy
H—U:+Hd——a—xz(uzl’)+l7 3x;’ (5.3¢)
o W
D= é?zR_eTiz’ (53d)
_ T 0w
¢= Re 6x, ’ (53¢)
Ve =—uj 6 + u ax, pkaxz. (5.3

The terms in (5.2) can be interpreted as follows: the left-hand side is the substantial
derivative of the turbulent kinetic energy along a mean streamline; P is the rate of
generation of turbulent kinetic energy by mean velocity gradients; T is turbulent
transport; IT are the pressure terms (pressure diffusion and pressure dilatation,
respectively); D is viscous diffusion; —¢ is viscous dissipation per unit volume; and
finally, V¥, includes the terms that arise when the density is not constant. The first
two terms of V. are due to the difference between the Favre and Reynolds average
and the last term is the production term due to dilatation. The pressure dilatation
as well as the dilatational dissipation, which are not included in V., are also due
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FIGURE 22. Turbulent kinetic energy budget: , simulation data; ----, Spalart’s data
Rey = 1410; —-—, Spalart’s data Rey = 670. Symbols are: C, Convective term; P, Generation
term; T, Turbulent transport; IT, Pressure terms; D, Viscous transport; —¢, Viscous dissipation.

to non-constant density. In the literature the dissipation per unit mass is commonly
referred to as e. Here we use the dissipation per unit volume, which we denote as
¢ for clarity. The dissipation and pressure terms are in a form similar to that given
in Huang et al. (1995). The compressible turbulent kinetic energy budget agrees with
the incompressible results of Spalart at two different Reynolds numbers (figure 22).
The generation term is larger than in the incompressible simulation, and the viscous
transport and turbulent transport terms are also greater in magnitude than in the
incompressible simulation. ¥, is small and has not been included on the plot for
clarity. Its maximum value is a factor of 25 smaller than that of the generation term.

The effects of compressibility on the dissipation have been of interest in the
literature, especially in the context of compressible turbulence models (Zeman 1990
and Sarkar et al. 1991). To study dissipation in the current simulation, consider ¢
which can be expanded as

T A T AN R AT
= Redx (6x,+6x,- 3%05% ) T Redx \ax T o  3%5x,

ﬂ/ 6uf 617,- 6&1 2 6ﬁk
+§E 0x; (6_x, + 0x; 35'16xk » (54)

where the three terms in this expression will be referred to as ¢i, ¢,, and ¢;,
respectively. The fluctuations about the Favre average in (5.3¢) have been replaced
using the identity

Ta 0% _ Ty 0%
Re 0x; Redx;

(5.5)

The terms, ¢, and ¢3, which involve viscosity fluctuations, are negligible compared
to ¢y in this simulation.
The first term, ¢, can be decomposed into parts that are more amenable to
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FiGure 23. Comparison of dissipation terms:
dissipation (—¢;); —-—, dissipation due to inhomogeneity (—g;); -------- , dissipation due to
dilatation —¢y,; +, Spalart’s data Reg = 1410; *, Spalart’s data Rey = 670.

comparison with incompressible flows by expressing velocity gradients in terms of the
rate-of-deformation tensor, S, and spin tensor, @, which is related to the vorticity
through Q;,Q;; = wjw;/2. Simplifying gives for ¢;:

_ B B[O o 0 0w\ 4 Ouou
¢ = Rei¥ +2Re (Bx,-ax, uith 26x1 i T3Re ox; 0xy.’ (56)

where the first term on the right is the homogeneous incompressible dissipation, or
the solenoidal part of the dissipation, ¢, the second term, ¢;, is due to inhomogeneity,
and the third term, ¢, is due to dilatation. Both the dissipation due to dilatation
and inhomogeneity are very small compared to the solenoidal dissipation (figure 23).
At the wall the dissipation due to inhomogeneity provides a very slight contribution
to the total dissipation. The compressible result agrees well with the incompressible
results of Spalart.

Finally, we consider the pressure terms. There are three: pressure diffusion (I7,),
pressure dilatation (IT,), and compressibility (IT,). The pressure dilatation term is also
associated with compressibility effects, since the dilatation is zero for an incompressible
flow. The three pressure terms are

ouyp oul — 0p

o, =— a;f , M=pg, M= —uga”;. (5.7a~c)
Of the three, II; and II, are much smaller than II, near the wall (figure 24). In
fact, the sum of the pressure terms is almost indistinguishable from II, in the wall
region, which shows that the compressibility terms have very little effect on the overall
contribution of the pressure terms to the turbulent kinetic energy budget. Away from
the wall, all the terms are small and the compressibility term contributes to the sum
of the terms. The pressure diffusion term is larger than the value obtained by Spalart
in both his Rey = 1410 and Rey = 670 cases.

The results and analysis given here show that at M = 2.5, the effects of compress-
ibility on the turbulent kinetic energy balance are not due to the new compressibility
terms that appear in the equations. Instead, the effects are more subtle, quantitatively
affecting the terms that appear in the incompressible case.
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FiGure 24. Comparison of pressure terms: I+ O+ ===~ Iy ——, Iy
-------- , II.; +, Spalart’s data Reg = 1410; *, Spalart’s data Rey = 670.

6. Conclusions

A direct numerical simulation of a Mach 2.5 turbulent boundary layer was carried
out using the method described in the Appendix. The Reynolds number of the
simulation was Rey = 849. Comparison with available experiments and with other
simulations (i.e. those of Spalart) suggest that the current simulation provides an
accurate description of a compressible turbulent boundary layer.

It was shown that many of the scaling relations used to express compressible
boundary layer statistics in terms of those for incompressible boundary layers are
consistent with the current simulation. In particular, we have shown that the Van
Driest transformed velocity behaves much the same as the streamwise velocity in
the incompressible case. There was a small logarithmic region with ¥ = 0.40 and
C = 4.7. It was also shown that the RMS velocity fluctuations are collapsed with
incompressible results by the mean density scaling suggested by Morkovin. When this
scaling is applied, the data from the current simulation agree remarkably well with
Spalart’s Rey = 670 and Rey = 1410 simulations. The mean density scaling of u'v/
also results in a fairly good collapse with incompressible results.

An inconsistency with the standard analysis of compressible turbulent boundary
layers was found in that the total temperature fluctuations were of the same order
as temperature fluctuations. This invalidates many of the assumptions made in
deriving the strong Reynolds analogy (SRA). However, the relationship between RMS
temperature and streamwise velocity fluctuations, (4.9a), agreed with the simulation
data reasonably well nonetheless. A condition for the validity of the RMS relationship
in the presence of significant total temperature fluctuations was derived, (4.12), and
this condition is satisfied by the simulation data. An expression for the correlation
coefficient Ry 7~ derived by Gaviglio (4.15) using the RMS relationship agrees very
well with the simulation data.

The low value of the correlation coefficient found in the simulations indicates that
instantaneous relationships between temperature and velocity fluctuations, (4.8) for
example, are invalid. Experimental evidence, however, suggests a much higher value
of the correlation coefficient than was found in this simulation. It appears that this
difference between experiments and the current simulation can be due to a difference
of about a factor of 2 in the magnitude of the total temperature fluctuations, with
the experimental values being smaller. The reason for this is not known.

The modified Reynolds analogy of Huang et al. showed better agreement with
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the simulation data than Gaviglio’s modified Reynolds analogy and the original
expression of Morkovin. Using Huang et al’s modified analogy, a relationship between
the rate of turbulent heat transfer and turbulent momentum transfer was derived and
shown to agree with the simulation data. The streamwise momentum and temperature
fluctuations were found to be very highly correlated throughout the boundary layer
with a correlation coefficient 0.88 < —R,;r < 1. This is in contrast to the low
correlation between the velocity and thermal fields away from the wall and also stands
in contrast to the lack of correlation between streamwise momentum and temperature
in the incompressible case (where velocity and momentum are proportional).

The turbulent kinetic energy budget was calculated and compared with those
of Spalart’s incompressible simulations. The peak rate of production was found to
be larger than for the incompressible case. This is balanced by an increase in the
magnitude of turbulent transport and viscous transport when compared to the incom-
pressible simulations. Some of this difference might be attributable to the different
small-scale resolution used in these two simulations, with the current simulation hav-
ing better resolution than the simulations of Spalart. Balances for the terms in the
Reynolds stress tensor have been computed and are presented in Guarini (1998).

The authors would like to thank NASA’s Numerical Aerodynamic Simulation
facility (NAS) and the Air Force Aeronautical Systems Center (ASC) Major Shared
Resource Center (MSRC) for their computational support. The simulation and code
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support of a NASA Graduate Student Researchers Program grant (NGT 2-52209)
and AFOSR grant F49620-97-1-0089 is gratefully acknowledged by the first and
second authors, respectively.

Appendix. Theoretical development

In this appendix we review Spalart’s transformation and apply it to the compressible
boundary layer. This involves the development of a generalized coordinate system in
which boundary layer growth is minimal, the definition of the two scales involved in
the problem, the transformation of the Navier—Stokes equations to the new curvilinear
coordinate system, and the calculation of the slow-growth terms. This analysis for
the compressible case mirrors that developed by Spalart (Spalart & Leonard 1987;
Spalart 1988) for the incompressible boundary layer. The particulars of that analysis
that are directly relevant to the current development are recalled briefly in § A.2 and
§ A.3 to fix the ideas and the nomenclature.

A.l. Equations

The form of the Navier-Stokes equations is chosen for computational convenience.
The energy equation is transformed so that pressure is a state variable instead of
energy. The fluid variables, u;, m; = pu;, p, and ¢ = (1/p) are non-dimensionalized by
oy Polos Pod?, and (1/p,), respectively. Lengths are non-dimensionalized by §, and
times by (d,/a,). Then the Navier—Stokes equations become

do _ ;20m

T o o)’ (Ala)
omi 0 ommy— 22 4 L%
ot 0x; (omim;) 0x; Redx;’ (A 10)

Op _ Opy; Ou; y—1 ou; 1 0q;
ot ox; l)pax,-+ Re Tl’i)xj-}-RePraxj' (Al
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The Reynolds number is Re = (p,a,9,)/ 1, and the Prandtl number is Pr = (uC,)/k.
The Fourier heat conduction law, g;, is given by

oT
9= #a‘j‘, (A2)
and the stress, 1;j, is
_ o,  Ou; 2. 0w
Tij—ﬂ(axj+'é')7i—35uaxk). (A3)

The temperature, T, is non-dimensionalized by T, = a?/(yR), such that the equation
of state, T = ya P, results.

A.2. Coordinate system

Following Spalart (Spalart & Leonard 1987; Spalart 1988), the Navier-Stokes equa-
tions are transformed into a coordinate system that is fitted to the growing boundary
layer. The new coordinate system is (£,4,z), where

E=x and #5=rn(x,y) (A4)

Curves of 7 = const. are slightly inclined to the wall with a slope S(¢,7) chosen in
such a way that we fit the growth of both the boundary layer and the viscous sublayer.
This coordinate system is selected so that when a small section of the boundary layer
is simulated, the variation of the mean fluid dynamic variables along a constant-y
curve is so small that approximate homogeneity will hold.
The Jacobian of the transformation involves two parameters, S and 7', where
S= oy

3¢ (A3)

2

The quantity § gives the slope of the constant-n curves, while T is the local stretching
between the y- and #-coordinates, and S, = T follows from (A 5). In terms of § and
T, the Jacobian is given by

8/0x 1 =§/T o 8/0¢&
/oy y=10 1/T 0 d/on . (A6)
d/0z 0 0 1 0/0z

A.3. Multiple-scale analysis

Even in the transformed coordinate system, the mean variables evolve slowly in £. The
fluctuations also have a slow variation in intensity at constant #. Thus, for example,
we approximate

W(&m,z,t) = Al mup(E,m,2,0), (A7)
where A, is a slowly varying amplitude and u, is homogeneous, so that in the
simulation it can be treated as periodic in &£. The subscript on A refers to the
fluid dynamic variable with which it is associated. The fluctuations of the other
state variables may be similarly decomposed. After introducing a slow variable
E = ¢ and a fast variable &, and using the techniques of multiple-scale asymptotics,
decomposition of the velocity into a mean and fluctuating part yields

u(é, E,1,2,t) = U(Z, 1) + Au(E, n)u,(E, 1,2, 1), (A8)
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and the derivative in the streamwise direction becomes

ou au ou, 0A,
:3—{' 0"'+A 6§+ hog (A9)
Using (A7) this can be rewritten in the compact form
uz = €Uz + u; + eug, (A 10)

where ug = A, u'/A,.
To allow vy = A,.u'/A, to be determined in the actual simulation, note that

é!iE'_ _ (u;’ms)E
A, u..

rms

(A11)

The coordinate system is also slowly varying in ¢ and hence y = y(Z,7), so that
(A 5) is rewritten as
~ oy ~ 0y
S=e—= d == . A12
€35 N an T o1, (A12)
The simulations can be regarded as being performed at a fixed value = = Zj of the
slow variable. We are then free to choose n such that y(Zo,1) = 7 which implies
T(Zo,n) = 1. We define S such that § = €S.

A4, Modified Navier-Stokes equations

Using the definitions above and replacing derivatives in ¢ with slow and fast deriva-
tives gives the transformed Navier-Stokes equations, that contain several additional
terms, shown enclosed in square brackets:

o _ 02% +e€ [—Saz(—aﬂ] + e[—(Gz + a%)am; + a(Us + uz)), (A13a)

FTARRA TS o
omy _ 0 6p 1 611, 0 5p
el 6{,~(amlm’) ¢ + Re 3%, +e %(u1m1)+355
+el(Gz + a%)m} — 2(Uz + uz)m — (bs + p2)), (A13b)
om0 @b, Low, [S0
Frabe aéj(amzm,) an + Re 3¢, +e 2 o —(uimy +u2m1)]
+e[(z + og)mumy — (Uz + ug)my — (Vz +v)mi], (A13c)
6m3 - J . 6 1 61,'3] S 5,
Fraie 6£j(am3m’) % *t R 3¢, +e (uaml + uym3)
+e[(6z + o%)mmy — (Wz + wg)my — (Usz + uz)ms), (A 13d)
@3 6pu, _ 6u, -1 6u, 1 6q,
at —O-=Dp +( e 5, T Reprag,

0 0 p /
+e [S 5"1‘(?“1) +S(y— 1)p51:1—1] + e[—(pz + p=)om — (Uz + uz)ypl.

(A 13e)
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Note that all additional viscous terms have been neglected, since they are all multiplied
by (S/Re), which is small. In particular, near the wall, where the viscous terms are
large, the value of S is approximately zero. The terms in square brackets are the
corrections to the original Navier-Stokes equations that account for boundary layer
growth. In each equation the first set of bracketed terms results from the coordinate
transformation and the second set results from the multiple-scale analysis. These
equations will be solved in a finite domain in the fast variable €. Thus, in the solution
domain, functions of the slow variable £ can be taken as constant (functions of y)
and the fluctuating quantities can be taken as homogeneous in the fast variable.

A.5. Slow derivatives of mean quantities

Before the modified equations (A 13) can be solved numerically, the slow derivatives
must be determined in terms of the simulation solution variables. For any arbi-
trary slowly varying function f, fz = f;/e. In what follows, it will be convenient to
determine relations for f, rather than fz. The slow derivatives of the mean thermo-
dynamic quantities are calculated using the Van Driest (1955) temperature—velocity
relationship as given by Walz (Fernholz & Finley 1980),

- (EY, (A14)
()]

where the recovery factor, r, is taken to be r = 0.896. Equation (A 14) was found to be
valid a posteriori in the simulations. Differentiating (A 14), the temperature derivative
is expressed in terms of the mean velocity:

T__ y—1 .,
Tm—1+r 5 Mg,

Since the pressure gradient, p;, is zero we get

pe _ _Te (A16)
p T
Introducing means and fluctuations into the relationship gp = 1, averaging, and
neglecting ¢’p’ gives after differentiation
Z=f (A17)
4 p
Thus all the slow derivatives of mean thermodynamic variables are related directly
to the slow derivative of the mean streamwise velocity.

For his incompressible simulation at the first station, Spalart used the well-known
scaling laws for the mean streamwise velocity to calculate its slow derivatives. There is
no equivalent scaling for compressible flow. However, the Van Driest transformation
allows one to define a transformed velocity which satisfies the incompressible scalings.
This transformation was found to be valid a posteriori in the simulations (see § 3.1). In
the definition of the van Driest transformed velocity, U, (3.2), v/ T/ T is a function
of ¢ and U. Differentiating (3.2) with respect to £ yields

OULE) _ /”‘f*” O (TN i (T
3¢ o E\T T

Now, the Van Driest temperature—velocity relationship (A 14) implies that tempera-
ture is a function of U alone provided the recovery factor, r, is independent of £.

oUE, )

(A18)
ven 96
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Experiments have verified that this assumption is valid (Fernholz & Finley 1980).
The first term in (A 18) is therefore zero yielding

1/2
U; = (T1> Ue,. (A19)

To obtain U,, (or Ug) for use in the modified Navier-Stokes equations (A 13), the
strategy is to develop a relationship between U, and U, using well-known model
profiles for the velocity U.. Then U,, can be calculated from U, as determined in the
simulation. Note that model profiles discussed below are used only to evaluate slow
derivatives. The mean velocity profile is determined from the simulation not from the
model profiles.

To develop an expression for U,,, a model profile for U, that is valid across the
entire boundary layer is needed. Since U, is the Van Driest transformed velocity, we
can use a model profile for the incompressible boundary layer, in particular, we use
the relation of Coles (1956):

Ve { Us, /e + (T /0)W(9/8), ¥ <9, a0)

Uy cho/u't’ y > 6,

where U,, is a basic law-of-the-wall profile and w(y/d) is a wake function. In order to
distinguish the model profile from that of the simulation, the model profile is denoted
by U,,. For the basic profile and wake function we use the relations of Reichardt
(1951) and Finley (Cebeci & Bradshaw 1977), respectively:

Uo _ 1, (1 + Ky”f) +C [1 _ e yullmw) _ (l”_f) e—yufb/vw] ’ (A21)
U, K Vi NivVw
and
Y\ _ (YN (Y VL 7\
mw (3) = (5) - (3) +on (5) -4 (5) - (A22)
Several of the constants in these expressions are prescribed, that is C; = —(1/x)In (x)+

C,n = 11,and b = 0.33. The constants, u,, k, and C are calculated from the simulation
mean velocity profile at each time step. This leaves two parameters, 6 and II, which
are determined by matching the properties of the model profile to the instantaneous
simulation mean velocity profile. This profile is a good representation of the mean
velocity throughout the boundary layer (see figure 5). Reichardt’s profile is used
instead of the classic profile of Coles because it captures both the linear sub-layer
behaviour, where U} = y™, and also the logarithmic behaviour of the mean velocity
profile. The standard log-law becomes infinite at the wall which is undesirable in a
simulation.

The parameters, § and IT are set so that the free-stream velocity U, and the
transformed displacement thickness of the model profile U, match those in the
simulation. Thus we have

U, = U, (9), (A 23a)

00 U 8 U
——=}dy= 1—- == dy. 23b
[ (-gs)eo-[(-a)e (n23
These relations lead to a nonlinear system of equations for & and IT (see Guarini
1998).
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The slow derivative U,, can be written as

U, u, (U, o (U,
— = — —{—1]. A24
U Uz <ur)+aé(uf> ( )
Using the model profile to evaluate the derivative, (A 24) can be written

U, uy (U, ou,, ou,, ou,,

w u (u) a5 %t G et e (A.25)

leaving just u,,, 8¢, and IT; to be determined. It is known that IT becomes independent
of Reynolds number for Rey > 5000 (Cebeci & Bradshaw 1977) and that the variation
of IT for lower Reynolds numbers is very small, thus the approximation IT; = 0 is
used. Since U, =0, (A25) can be evaluated at y = J to obtain a relation between

., /u, and 8¢ /6:

e (u0/Uc v){(1 +Kkduc/v) '+ R} (¢ (A26)
U (@26 /U, vu){(1 + kdu./vy) ' + R} +1\ 6 )’
where
R= % [e—auf/mm) n (?”;b _ 1) e—éufb/vw] , (A27)
1 w

and the assumption S(y = ) = J;/5 has been made. To find d;/6, the momentum
integral equation, and the assumption 8;/d = 6;/8 (constant shape factor) is used to
obtain
55 _ Tw

5 OpoU2
This closes the system of equations for Uy, /u..

Since the slowly varying amplitude functions are proportional to the RMS fluctu-
ations, we can calculate the slow derivative of the velocity fluctuations by assuming
a similar scaling law as was used by Spalart for his simulations, which yields

(A28)

Avi.f _ 14&

VT (A29)

Since the simulation results show that the scaling used in the incompressible case
is modified by the mean density profile, (A 29) could be improved by including this
scaling.

To determine the metric S we take the first derivative with respect to ¢ of the
following expression given by Spalart (1988):

_ Yieayt) +y"(y/9)
’ Y+

where y, = (y133)"%, yit/vy = c1, y3/8 = ¢, and p = c3/log,e(y3/y1). Spalart’s
choices for the constants ¢y, ¢, ¢3, and ¢4 are 0.5, 0.3, 5.0, and 0.001, respectively; #; is
a weighted average of wall units and y/d units. It should be noted that the quantity
75 is not the same as 5 and does not satisfy the conditions y =# and T =1 at the
station of the simulation. Nonetheless, 7, can be used to calculate § since it follows
the growth of the boundary layer and viscous sublayer (see Spalart 1988).

All the slow terms in (A 13) can now be determined from the simulated quantities,
thus closing the equations.

(A 30)
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THE NUMERICAL DECOMPOSITION OF TURBULENT
FLUCTUATIONS IN A COMPRESSIBLE BOUNDARY LAYER.

STANISLAV G. BORODAI AND ROBERT D. MOSER

AssTrACT. In many flows the turbulence is weakly compressible even at large
Mach number. For example, in a compressible boundary layer with Ma < 5,
the differences relative to an incompressible boundary layer are understood as
being caused by density variations that accompany variations in temperature
across the layer. Turbulent fluctuations in a compressible boundary layer are
therefore expected to be dominated by the effects of non-constant tempera-
ture, and low Mach number theories in which acoustic fluctuations are not
dominant should be applicable to the fluctuating field. However, the analysis
of compressible boundary layer DNS data reveals the presence of significant
acoustic fluctuations. To distinguish between acoustic and thermal effects, a
numerical decomposition procedure for compressible boundary layer fluctua-
tions is applied to determine the acoustic and nonacoustic fluctuations. Except
for very near the wall, where the decomposition procedure is not valid, it is
found that the nonacoustic fluctuations are only weakly coupled to the acoustic

fluctuations, at Mach numbers as high as 6.

1. INTRODUCTION.

Much of the effort in turbulence research has been directed towards incompress-
ible turbulence, due to the simplifications the incompressible assumption provides
and because of the belief that turbulence is primarily an incompressible phenome-
non. However, many flows of technological interest are compressible, so it is of some
importance to understand the effects of compressibility on turbulence. Fortunately,
it is observed in many flows that turbulence is in fact only weakly compressible,
even at large Mach number.

In this paper we consider the effects of compressibility on turbulent boundary
layers. A manifestation of weak compressibility in the boundary layer is Morkovin’s

hypothesis [18], which suggests that the dynamics of a compressible boundary layer

1
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is close to incompressible as long as the fluctuating Mach number Ma' is small.
Based on this hypothesis, compressible boundary layers with free stream Ma up to
5 are considered weakly compressible and the differences relative to an incompress-
ible boundary layer are understood as being caused by the mean density variation
that accompanies the mean temperature variation across the layer. Morkovin’s hy-
pothesis and other weakly compressible assumptions, such as the Van Driest trans-
formation [4] and Strong Reynolds Analogy [18] have been widely used in modeling
turbulence in compressible boundary layers [26, 13]. Morkovin’s hypothesis breaks
down when the Mach number is so large that the temperature fluctuations are sub-
stantial [26]. However, the extent to which true compressibility effects (i.e. finite
propagation speed of pressure signals) are playing a role in this breakdown is not
clear. If acoustic effects are not important in this breakdown, then a formal low
Mach number asymptotic treatment of the turbulence may be applicable to much

higher Mach numbers.

1.1. Low Mach number asymptotic analysis. Recently, a number of papers
on low Mach number asymptotic descriptions of compressible flows have been pub-
lished. Rigorous proofs of convergence to the incompressible flow equations in the
limit of low Mach number under certain conditions were given by Klainerman and
Majda [10, 11] for Euler equations with polytropic equation of state and by Kreiss
et al. [12] for Navier-Stokes equations. However, the use of a polytropic equation
of state restricts the applicability of the analysis, by eliminating the heat transfer
effects important in the dynamics of a compressible boundary layer. When relaxing
this restriction, it was pointed out by Matthaeus et al. [28] and more generally by
Bayly et al. [1] that a variety of low Mach number asymptotic limits are possible,
depending on the relative scaling of the thermal and acoustic fluctuations. Such
analyses yield low Mach number approximations to the compressible Navier-Stokes
equations, which may or may not include acoustic effects, depending on the details
of the scaling. These approximations were also extended to more complicated sit-
uations, such as magnetohydrodynamics [16]. A number of exact solutions for low

Mach number limits of the Navier-Stokes equations were derived by Fedorchenko [6].
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Also, the low Mach number limit of compressible flow without the assumption of
incompressibility at the lowest order velocity was considered by Miiller [19].

In applying low Mach number asymptotics to a particular problem, it is neces-
sary to determine which of several Mach number scalings is appropriate. For the
adiabatic wall boundary layer turbulence, thermal effects appear to dominate over
acoustics since temperature fluctuations are generated due to the presence of mean
temperature gradients. This is consistent with approximations such as Morkovin’s
hypothesis. The heat flux dominated hydrodynamics of Zank & Matthaeus [28]
is one asymptotic system that appears appropriate for the boundary layer. The
determination of an appropriate low Mach number asymptotic limit for boundary
layer turbulence will provide a basis for compressible turbulence modeling in this
flow, and would provide a more rigorous foundation for such models than the ap-

proximations embodied in the Morkovin hypothesis and Strong Reynolds Analogy.

1.2. Weakly compressible turbulence models. The idea of utilizing the results
of weakly compressible analysis in turbulence modeling is not new. It was used ex-
tensively by a number of authors. For example, Erlebacher et al. [5] used a weakly
compressible asymptotic approach to study the influence of initial conditions on
the turbulent dynamics, Sarkar et al. [23] and later Ristorcelli [21] used it to model
the dilatational terms in compressible Reynolds stress model, and Rubinstein and
Erlebacher [22], used this idea to derive the transport coefficients in weakly com-
pressible turbulence and, as a result of that, proposed a generalized eddy viscosity
model of turbulence. However, application of low Mach number asymptotics to tur-
bulence modeling is fraught with uncertainties. In particular, one does not know
a priori what low Mach number scaling applies to the case at hand. Further, in
some cases, the asymptotic equations are written in terms of distinct acoustic and
nonacoustic variables. It is very difficult to check modeling assumptions involving
these quantities, since they are not physically realized, and so cannot be directly

measured.

1.3. Compressible flow decompositions. When both acoustic and thermal ef-

fects are present, the use of weakly compressible asymptotics in modeling and other
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applications would be greatly facilitated if one could distinguish the acoustic fluc-
tuations from the turbulence in a compressible flow field. The idea of representing
a compressible flow as a sum of different components was introduced by Chu &
Kovasznay [3]. They identified vortical, entropic and acoustic components. How-
ever, in their analysis Chu & Kovasznay did not pursue the question of how the
flow variables can be actually decomposed. Later, the mathematical procedure of
decomposition of the flow variables was developed for various flows. Examples in-
clude decomposition of disturbances about an arbitrary potential mean flow [8] and
about transversely sheared mean flow [7]. The review paper by Lele [13] gives more
details about these decompositions. The results of these decompositions may pro-
vide certain advantages for the analysis of compressible flows, since the equations
for the individual flow components are less complicated [20].

To actually apply such a decomposition analysis to extract acoustic components
of a flow, one needs the three-dimensional velocity, density and temperature (or
pressure) fields. Currently, such data are only available from direct numerical
simulation (DNS). Such simulation data was used by Blaisdell [2] to decompose
turbulence pressure to aid in the study of the pressure strain correlation. But, in

this case only homogeneous shear turbulence was considered.

1.4. Decomposition development. The research reported here was undertaken
to facilitate the use of weakly compressible asymptotics for the analysis and model-
ing of turbulence in a compressible boundary layer. Fields obtained from the direct
numerical simulations of Maeder et al. [14] at Mach numbers ranging from 3 to 6
were subjected to extensive analysis to evaluate the validity of the asymptotics and
to characterize the compressibility effects.

A preliminary analysis (reported in section 3) of this data shows that the HFDH
of Zank & Matthaeus [28] is an inadequate description because acoustic pressure
and dilatation fluctuations are not negligible. Based on these observations, a more
appropriate low Mach number scaling is determined, and governing equations for
acoustic and nonacoustic parts of the flow are derived (section 4). These equations,

extended to the case of weakly compressible fluctuations in the flow with supersonic
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mean (appendix A), are used in section 5 to devise a numerical decomposition algo-
rithm to separate the acoustic and nonacoustic fluctuations, and this decomposition
is validated. Finally in section 6, the results of the decomposition are discussed,

along with some concluding remarks.

2. PRELIMINARIES.

The research discussed here is based on analysis of the compressible Navier-

Stokes equations, and the direct numerical simulation (DNS) of compressible flow.

2.1. Compressible Navier-Stokes equations. In nondimensional form the com-

pressible Navier-Stokes equations are:

5 B =0 )
%1%_'_"’.%:*@‘/%“%%‘/%’ (2)
% + ug‘% + vpgi;f = %7_}@1—6?9%; (ug—i) + 2(;7:1?)2@9;;2.];“, ®3)
p=T—r (4)
Where

=3 (5o + o) ~ 3 ®

is the deviatoric part of the strain-rate tensor, V = 1/p is the specific volume,
¥ = ¢p/c¢y is the adiabatic index with specific heats ¢, and ¢, considered to be con-
stants. The Fourier heat conduction law is used in (3) to express the heat flux. The
second coefficient of viscosity is assumed to be zero, and the ideal gas law (4) is the
equation of state. As is appropriate for boundary layer analysis, free stream values
of stream-wise velocity (uco), density (peo) and pressure (P ), and the boundary
layer thickness (§) were chosen as reference quantities to nondimensionalize equa-
tions (1)-(4). The coefficients of viscosity p and thermal conductivity A were scaled
with respect to their free stream values po, and Ao, and the dimensionless param-
eters in (1)—(4) are the Mach number Ma = oo /Coo Where oo = v/YPoo/poo i the

sound speed, the Reynolds number Re = (pootoof)/too and the Prandtl number
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Pr = (f1o0¢p)/A. The Prandtl number is assumed to be constant. The dynamic
coefficient of viscosity p is dependent on temperature T only, according to the
Sutherland law (see, for example, White [27]):

3
_ T\? 1+Tsu/Too
#= (a) T/ + Tyu/Too’ (6)

where Ty, is the Sutherland constant, T, is the free stream temperature and the
coeflicient o = (Too pocCp)/Po = ¥/ (¥ — 1) is a consequence of the way temperature
was nondimensionalized (T = T*poocp/Poc, Where T* is dimensional temperature).

We use the geophysical coordinate system, so z is the streamwise, y is the span-
wise and z is the wall-normal coordinate. The (*) superscript denotes the variables
in wall units, and dg9 is used as the boundary layer thickness §. Reynolds mean
quantities are obtained by averaging over streamwise and spanwise directions. Pro-

files of various quantities presented in the figures are averages over time.

2.2. Governing equations for fluctuations. Turbulent fluctuations are the to-
pic of primary interest. The equations for the fluctuations can be obtained from
(1)-(4) by subtracting the equations for the Reynolds averaged mean in the usual
way. The result is:

op'  0Op'u; Opul ap'ul\’
o0 | 0T Oy (O
8t = Ox; oz; Or;

6u 8u,~ + ,3171' ,8u;~ !
ot J sz J 62:]

1 [(—oy ., 0p 0 2 [ ousi\
 yMa? (VBZ,+V8:K (V 62,>>+_<V ;TJ]) ®)

81’ op’ —|—u 3ﬁ +< 5p) +7p6uk pauk +(7 Buk) _

(")

I

o " %on; T, T\"ag, Bz 9z
y—-1 8 aT \' (v = 1)yMa? o o\
Pr Re 0z (“au) +2 Re (ususu) ! 9)
7 ’Y— '
P=— (pT +pT+(pT)) (10)

The overbar in the equations (7)-(10) denotes Reynolds average, prime denotes
fluctuations. It is common to define the mean and fluctuations via the Favre average

(for a given variable 3, the Favre average is 8 = pB/p), since it makes the mean
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equations simpler. However, the use of Favre average does not significantly simplify
the fluctuating equations, and for the current analysis the Reynolds average was
found to be more convenient. A similar analysis using the Favre average is also

possible.

2.3. Properties of DNS data. In our research, data from the parallel boundary
layer simulations of Maeder et al. [14] with free stream Mach numbers of 3, 4.5 and 6
were used. The grid and domain sizes for these simulations are shown in the table 1
(x, y and z are stream-wise, span-wise and wall-normal directions respectively), the

physical parameters are provided in table 2.

Ma | Grid size (Ny x Ny x N;) | Domain size (L x Ly x L)
3.0 192 x 144 x 180 5431 x 310% x 1163+
4.5 432 x 192 x 200 1175+ x 282+ x 470t
6.0 240 x 160 x 220 319" x 193* x 404*

TABLE 1. DNS grid and domain sizes.

Ma | Reg | Tw/Too | Cyx10% | Hyy Uy

3.0 13028 | 2.50 2.02 5.86 | 0.0498
4.5 | 3196 4.38 1.46 9.22 | 0.0552
6.0 | 2945 | 6.98 1.14 17.20 | 0.0614

TABLE 2. DNS physical parameters.

In Maeder’s simulations, the parallel boundary layer approximation is used,
which is based on the assumption that the boundary layer is growing slowly in the
stream-wise direction. This allows one to consider a boundary layer with parallel
streamlines, while boundary layer growth is accounted for by extra terms intro-
duced into governing equations through a two-scale asymptotic treatment. The
homogenization technique used by Maeder is similar to that of Spalart [25] who
also uses a two-scale asymptotic analysis in the boundary layer.

The horizontal domain size in Maeder’s simulation is smaller than that used by
other authors (e.g. Guarini [9]), so some of the flow details in Maeder’s simulation

may be affected by domain size. However, the Maeder’s data is suitable for our
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purposes since we are primarily interested in compressibility effects which can be
investigated in small spatial domains.

In these simulations, the boundary conditions at the wall were no-slip and
isothermal with temperature set to the adiabatic wall temperature. For the free-

stream boundary, non-reflecting boundary conditions are used.

3. APPLICABILITY OF THE HFDH APPROXIMATION.

Compressibility effects observed in turbulent boundary layers are thought to
be dominated by variable fluid property effects (density and viscosity) [26]. One
would therefore expect the turbulence to be well described by a formulation in
which acoustic effects play only a minor role in the flow evolution, being a higher
order correction in the variable fluid properties governing equations. In partic-
ular, the Heat Flux Dominated Hydrodynamics (HFDH) description of Zank &
Matthaeus [28] would be expected to be valid. To determine if this is in fact the
case, the DNS data of Maeder is examined, as described in section 2.

In the HFDH limit, the energy equation expressed in terms of the pressure
reduces to a compatibility condition relating velocity divergence to the divergence

of heat flux:

Our, -1 0 ( 6T). (11)

7p5z—;: - Pr Re@T‘k “Elz

Applying a similar analysis to the turbulent fluctuating pressure equation (9), one

obtains a relation for the fluctuating divergence:

_Oup,  y-1 0 oT Y\’
"3z, ~ Pr Reozy (“5;;;) - (12)

This relationship was tested directly in the DNS data, and the results are shown
in figure 1. Throughout the boundary layer, there is a significant error in the
satisfaction of this equation; on the order of 50%. An examination of the remaining
terms in the pressure equation shows that there are several other significant terms
with magnitudes comparable to those in (12). The following relation represents

equation (12) extended to include all of the most significant terms in the fluctuating
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FiGURE 1. The r.m.s. profiles of the terms from relation
(12): the divergence term yﬁg—;i”j (—), the heat flux

_ ' . — 0
term };’T—ée%(ué‘%—) (--e-e- ) and the difference ’ypa;‘k -
¥y=1_ 8

!
PrFe Bar (ugzlk) (- - --). The z on this figure is the wall-normal

coordinate, § = dgg is the boundary layer thickness (Ma = 3).

pressure equation:

of o (B0, ow_ -1 9 (oTY
ot +u’8xj+<ujaa:j P52, = Pr Reoay \"oz;) (13)

r.m.s. profiles of these terms are presented in figure 2. The first three terms in (13)

(which are the difference between (12) and (13)) are large and do not cancel each
other, despite the fact that in the context of the HFDH asymptotics, these terms
are higher order.

A clue to the nature of the discrepancy is provided in figure 1. Note that outside
the boundary layer (z/é < 1), there is significant velocity divergence, but no heat-
flux divergence. In this region the fluctuating divergence must then be attributable

to acoustics. The magnitude of this acoustic component of fluctuating divergence
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FI1GURE 2. The r.m.s. profiles of the most significant terms in fluc-

tuating pressure equation: the divergence term 'y]_)g_:': ( ), the
heat flux term P"’T_;ie 5% (p%)l (CERREEED ), convective time deriv-
ative %’% = %Pti + Tijg% (- - --), and convection with fluctuating
velocity (] g&) (———) (Ma =3).

is likely to stay the same in the boundary layer, since there is nothing preventing
acoustics from propagating into the boundary layer. Thus, there appcars to be
an acoustic component of the fluctuating divergence with a magnitude of the same
order as the magnitude of the divergence generated by the heat flux, suggesting that

the mismatch in the compatibility condition (12) is due to the acoustic fluctuations.

4. Low MACH NUMBER ASYMPTOTIC ANALYSIS.

The goal of this research is to split compressible fluctuations into acoustic and
nonacoustic parts. The governing equations for these parts can be obtained con-
sidering the limit of small turbulence Mach number. For simplicity, asymptotic

analysis presented in this chapter deals with the case of low Mach number flow, the



THE NUMERICAL DECOMPOSITION OF BOUNDARY LAYER FLUCTUATIONS 11

extension to the case of low turbulence Mach number flow with supersonic mean is
given in Appendix A. The resulting governing equations will be used in section 5

to perform the numerical decomposition of compressible fluctuations.

4.1. Asymptotic scaling. To begin the analysis, the leading order asymptotic
behavior of the flow variables as the parameter ¢ = \/yMa — 0 should be postu-
lated, since as described in section 1.1 there are several possible low Mach number
asymptotic limits. Based on the observations of the DNS data described in sec-
tion 3, the flow variables are assumed to be composed of incompressible (subscript

‘T’), thermal (subscript ‘t’) and acoustic (subscript ‘a’) parts, which scale with ¢ as

follows:

u=uy +e(u; + u,), (14)

p=1+&*(pr + pa), (15)

T=—T— 4+ T, + 2T, (16)
v—-1

p=1+¢ep, +€%pq. (17)

At zeroth order the flow variables are incompressible, with constant temperature
and density (equal to 7—"_% and 1 respectively because of nondimensionalization
(see section 2)), resulting in a constant zeroth order pressure (equal to 1 in this
nondimensionalization). However, the incompressible pressure py, which appears in
the incompressible Navier-Stokes equations, is of order O(¢?). Consistent with the
observation (section 3) that the acoustic and nonacoustic divergence are of the same
magnitude, the thermal and acoustic velocity parts are of the same order. This fixes
the asymptotic scaling of the other thermal and acoustic quantities. Note that the
acoustic pressure is then the same order as the incompressible pressure, although
the acoustic density and temperature are of higher order than the corresponding
thermal parts. The representation (14)—(17) is essentially an extension of the HFDH

limit of Zank & Matthaeus [28] to include the acoustic component.
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Since the viscosity depends only on temperature and specific volume is just the

inverse of density, they can also be represented as:

p=1+eu +e2p,, (18)

V=14¢eV, +€%V,. (19)

In the limit of small Ma, there are two widely separated time scales: the in-
compressible convective time scale §/uq and acoustic time scale 6,/%/ce. The
later time scale is smaller than the former by a factor of €. So we can proceed as
in multi-scale analysis and introduce two time variables, the incompressible (slow)
time t; = uxt*/d = ¢ and the acoustic (fast) time t, = cot*/(01/7) = t/e. The

derivative with respect to ¢ is then given by:
1
==t . (20)

One can also formulate a low Mach number asymptotic analysis using multiple
length scales. However, multiple length scale analysis is inappropriate in our case,
since the results of this analysis will be applied to the DNS data, and this data
does not support arbitrarily long wavelengths.

Note that in the current analysis we are not using a standard asymptotic expan-
sion approach. In such an approach all the flow variables would be represented as
power series of € with order one coefficients, and then the necessary conditions for
the coefficients would be derived. Instead, a consistent asymptotic behavior has
been postulated through the leading order scalings in (14)-(19). Further, the coef-
ficients in (14)-(19) (e.g. u¢, u,, etc.) are order one, but they are not independent
of €, as would be the case in a standard asymptotic expansion. This means that
there has been no higher order truncation of asymptotic expansion of the variables
so far at this point in the analysis. The higher order terms in the expansions just
got, absorbed into the incompressible, thermal and acoustic variables.

The expansions (14)-(19) does not completely define what the incompressible,
thermal and acoustic components of the flow are. It simply defines the leading order

scaling of these components. So, other requirements must be imposed to uniquely
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define the incompressible, thermal and acoustic components of a variable at a given

order. These requirements are:

1. the incompressible velocity uy is divergence free, i.e.

6qu
-1 _ 9. 9
bz, O (21)

2. the leading order variation of nonacoustic quantities on the acoustic time scale
is only due to convection by the acoustic velocity, i.e. for a given variable 3,

the fast time derivative of its incompressible part 8; and thermal part S;

satisfy:
OB | o OBur 2, OBur
gr. +€ Uej oz, O\ Uiy ) (22)

where ;s is either B; or fBy;
3. the slow time variation of the acoustic quantities is only due to their propa-

gation through the slowly varying nonuniform medium.

It follows from (22), that the variation of nonacoustic parts B ; on the fast time
scale is two orders higher than the leading order of f; s, so at the lowest two orders,
the nonacoustic parts f; ; can be distinguished from the acoustic part 5, by the fact
that they only vary on the slow time scale. This definition becomes ambiguous at
higher orders at which the nonacoustic parts have fast time scale variation by (22},
therefore setting the maximum order that can be considered in the analysis. The
highest order retained in the equations for a given variable § will be the order of
the slow time derivative 88,/0t; of the acoustic part of g.

Condition (1) specifies the distinction between the incompressible and the ther-
mal variables, while conditions (2) and (3) distinguish the acoustic and non-acoustic
(thermal and incompressible) quantities and provide a way of separating governing

equations for these quantities at the orders of interest.

4.2. Derivation of acoustic and nonacoustic governing equations. Our goal
is now to formally decompose the governing equations into separate equations for
the acoustic and nonacoustic parts, as in Chu & Kovésznay [3]. This is accomplished
by separating the terms that involve only the slowly varying nonacoustic quantities,

from those that involve acoustic quantities and are therefore rapidly varying. These
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terms are decoupled on the fast time scale since the nonacoustic quantities do not
vary on this time scale by item (2) above. They are decoupled on the slow time scale
since the fast acoustic terms balance between themselves, even on the slow time
scale (item 3 above). The fast time scale equation will be the acoustic governing
equation, while the slow time scale equation will be the nonacoustic governing
equation.

The representation (14)-(20) is substituted into (1)-(4), the terms of equal order
in € are collected up to the order of the slow derivative of the acoustic quantity, and
the slow and fast terms are separated to obtain acoustic and nonacoustic governing
equations.

For example, consider the expansion of the continuity equation (1) (using (21)

and (22)):

5Pt+5<apt Opa Opy | Ouy; 6uaj>+

tursg b g *

Ot, oty Ot, Or oz; Oz;
0pa Opy Op; Opa Ouy; Oug;
2 Ouyj OUaj
<8t +u,16 +u ”6 turjz - +p,a$] + pt 7z, + 0(e®) = 0. (23)

The fast terms in this equation yield the acoustic density equation:

Opa , Otaj | (2 (OPa \\\ OPa Olaj 3 _
€<6ta+6zj)+€ 8t1+u1’8$j+pt8.1:]— +0(e”) =0, (24)

while the slow terms produce the nonacoustic density equation:

Opt Opr | Ouyj 2( .8 3%) 3 =
(8t +u “8 +amj +e ”‘Ja +p ‘Bz, +0(e’) =0. (25)

Applying the same analysis to the the momentum equation (2), and keeping

explicitly the terms up to the order of du,/dt;, we get:

10up;  Oup; Our;  Ouy  Ougi
1 Li Ii +ur; Ii + ti + Lai +
€ Ot, oty Ox; Ot, Otq

(autz Ougi 3“1: Our; Ouy; 6“(11) _

4= 4y +u
at; Bt Mg, T, T Miag, T iy,

Op;  Op. | 2 Ospj

Bx,- aivi + EE 311:]'

_ _‘?ﬂ_ Opa 6311] aﬂtglij agtij agaij 2
E( Vtazz‘ Vtaiﬂi Re (Vt Oz; Oz; + oz; + Oz +0(e%),

(26)

+
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o [+] ] o ) o] o .
where s7i; = sij(u = ur), sy = sij{u = up), and sqi5 = 8i5(u = wa). Again,
splitting (26) into acoustic and nonacoustic equations as discussed above, one ob-
tains:

Oug; Oug; Oug; _ apa 8pa i aSaz] 2
Bt +E<6t Tl 6z])_ 9z, ( Viow T e an, ) TOEH @D

for the acoustic momentum equation and

Our; Our; Oug; Our; Ouy _  Opr 2 Os1ij
Bty " ag; TC (at; TGy T Mg )“ dc: | Re bx;
6 2 33111 81%311'1‘ 83”]
8( Vta + (V Ox; + 0z + Oz; + 0. (28)

for the nonacoustic momentum equation. As may be expected, at lowest order the
equation (28) is just the constant density incompressible Navier-Stokes equation
governing u;y.

Finally, the procedure is applied to the pressure equation (3)
(sz Opa | Ouyy 6Uaj) 4 g2 (3171 Opa Opr 6pa) _

ot, " ot. T z; Vo, at; "Bt T Migg, TMig

Y — 1 82Tt
EPr Re 0z, 01

2 y=1 (8 ( 0T 8T, 2y=1o o ,
¢ (Pr Re (8zk (Htazk + Orx0zy, + Re srijSrij | + O(e”).

yielding the acoustic pressure equation:

Opa | Ouaj\ | o(Opa . Opa\ _ 2v—1 T, .
¢ (5ta 7 Ox; ) te <8t1 M ox;) © Pr Re Oz Ozy, +0(), (30)

(29)

and nonacoustic pressure equation:

Oy Opr opr\ v-1 0T,
€7 9z, +et (Bt tu Ijax] = ¢Pr Re 0z,.0x4,

-1 @ oT; 2(y-1o o
(B reas (Mgay) + e bt ) + 06, e

At leading order, the equation (31) is the analog of the compatibility condition (11)

for the nonacoustic part of governing equations.
The leading order terms of (24),(27) and (30) constitute the equations of linear

acoustics. Further, by combining equations (24) and (30) one obtains:

Opa __ 0Opa 2
sata =€y oL, + O(e*), (32)
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which implies that
e’pa = €27pa + O(E®), (33)

which is just the linearized isentropic relation between pressure and density. In
(33), the additive O(e?) function f(t;,x) arising from time integration of (32) was
neglected by our assumption that there is no contribution from nonacoustic terms
varying on the slow time scale to the acoustic equations at the orders of interest.

Now, for the sake of completeness, consider the equation of state (4). The two
lowest nontrivial orders are:

e(y-1)

2
e(pr +pa) =
¢ v

e’ (y~1)

(:{Z‘Tm +T) +
(P Ty pu= +T) + O, (39

Again, using the same splitting procedure, one obtains the acoustic equation of

state:

e, =200 + T21) 4 0), (35)
and nonacoustic equation of state:

-1 ey -1
e’pr =¢e(pt + gfy—,y—)Tt) + *‘("yjy—l/)th +0(%). (36)

The leading order part of nonacoustic equation of state (36) is just a Boussinesg

relation. Substituting for p, in (35) from (33):
e2p, = 2T, + O(e?), (37)

which is a linearized isentropic relation between pressure and temperature. The re-
lations (33) and (37) suggest that order €2 acoustic density and temperature should
not be neglected in the corresponding asymptotic expansions, if one is interested in
identification of the acoustic effects in compressible heat flux dominated flow.

It is instructive to contrast the above development with the HFDH limit of Zank
& Matthaeus [28]. Even though the acoustic pressure p, is included in the HFDH

analysis, pressure fluctuations do not propagate at the first nontrivial order. The
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reason is that p, is neglected in HFDH in (23). If p, is neglected, then from (23)

it follows:
i (9ut]- 8uaj .
3%(3%'F&w +0(e) =0, (38)

since Zank & Matthaeus assumed that p; and u; do not vary on the fast time scale
and that u; is divergence free. If one now takes the time derivative of the equation
(29) noting that T; and p; do not vary on the acoustic time scale in HFDH, at
leading order one gets (using (38)):

82pa
.2

+0() =0 (39)

rather then the wave equation for p,. On the other hand, in the current analysis, the
wave equation for acoustic pressure can be obtained by applying a similar procedure

to the equations (27) and (30).

4.3. Consolidated equations. The decomposed equations derived in subsecti-
on 4.2 can be rewritten in a more useful form. In particular, we are interested
in the nonacoustic components of the variables, which include both incompressible

and thermal fluctuations. The nonacoustic parts of variables are therefore defined

as follows:

Un=Uujy -+ EUyg, (40)

pn=1+€%py, (41)

T,=—1— +¢T, (42)
y-1 ’

pn=1+eps; (43)

where subscript ‘n’ denotes the nonacoustic part. The nonacoustic equations are

then:

Opn apnunj 2\ _

o+ ag, TOE)=0 (44)
Oun; OQuni _ 1 Opn

2 8.u'ngnij 2
ot T dr;  €2p, 0z; Rep, Oz O, (45)

Ouy _ y=1 8 ( O\ 0o
7 sz - Pr Re a.’L'k <“"8xk) +O(E )’ (46)
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pnln = ;—’_Y‘—l- + 0(52). (47)

We would like to stress here that all the terms in the equations (44)-(47) vary on
the slow time scale only. In particular, the time derivatives in (44) and (45) are
slow derivatives. Also, it should be noted that there is an O(e?) contribution to
nonacoustic temperature and density, as a result of the lincar response to the O(e?)
incompressible pressure. Such temperature and density variation is commonly re-
ferred to as pseudosound [17]. The incompressible pressure is not dynamic, and
so pseudosound temperature and density do not play an important role in the dy-
namics of the nonacoustic part of the flow. They were therefore neglected in the
system (44)—(47). That’s why equation (44) is written as valid to the order O(g?).
Note that the nonacoustic equations (44)-(47) closcly resemble the equations of
zero Mach number combustion (see, for example [15]).

Now, for convenience, the notation for the acoustic quantities is changed to be

just the total quantity minus the corresponding nonacoustic parts, i.e.:

U=U — Up = EUq, (48)
Ps =P — Pn = € Pa, (49)
To=T — T, = €T, (50)
Ps=p — pn = € pa; (51)

where subscript ‘s’ denotes the acoustic part in the new notation. The correspond-

ing set of governing equations for this acoustic part is:

Bugi Busi _ 1 8ps 2 OpnSsj )

ot + ting dz;  €2p, Oz; + Re p,, Oz +0(), (52)
Ops ‘8ps Ousj  v—-1 0 oT, 3

ot + Unj oz; +Pn dz; ~ Pr ReOxy Hn oz +0(e), (53)
ps = 7ps + O(e®%), (54)
ps = Ts + O(€%). (55)

The equations (52)-(55) are the equations for acoustic waves in the convective

variable density medium defined by the nonacoustic field.
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4.4. Governing equations in the case of a flow with a supersonic mean.
To study the compressibility effects in supersonic boundary layers, the acoustic
and nonacoustic equations, derived above, must be extended to the case of a flow
with a supersonic mean. The extension relies on the observation that the turbulence
Mach number can be small even when the mean Mach number is large. A low Mach
number asymptotic truncation can therefore be fruitfully applied to the turbulent
fluctuations, even when it cannot be accurately applied to the mean. The details
of this extended analysis are given in the Appendix A. The resulting equations for
nonacoustic fluctuations are given by:

Op;, Opnln;
ot +< (9:1)]‘

oul,; Ouni \’ 1 p.\' 2 &ungmj I 9
_Bt_ -+ <um—a—w—3—) = —E_Z (Vna—xz) + R—e— (Vn——ggj—— + O(&t), (57)

sy _ y=1 0 ( OTw)'
L Ox; " Pr Redxy, ”“a:ck

2(y — 1)e? 35 5 o
2070 (18 + B ) + OGD), (58)

)I + O(?) = 0, (56)

_ 7 = 2
pnTn = o O(e7). (59)

For the acoustic fluctuations, we obtain:

Oug; _8U'si ’ 1 9ps\’ 2
ot + (Unj 31)3) T2 (Vn 3_1‘2) + O(g7), (60)
ap, ap,\' du;\ s
T + (um 6$j) + <pn oz, ) = O(g3), (61)
p's 3
o =—2 40, 62
T! = ‘9—5— + O(ed). (63)

These equations derived serve as the basis for the numerical decomposition of com-
pressible boundary layer fluctuations discussed in the section 5.
5. NUMERICAL DECOMPOSITION.

To assist in the evaluation and characterization of compressibility effects in tur-

bulent boundary layers, a numerical decomposition of turbulent fluctuations into
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acoustic and nonacoustic parts is developed. The algorithm is based on low turbu-
lence Mach number analysis discussed in A, and it allows the decomposed quantities
to be determined from a compressible flow field. The description of the algorithm
and its application to the boundary layer DNS data of Macder et al. [14] with Ma
equal to 3, 4.5 and 6 are described in this section.

One of the main goals of this decomposition is also to directly evaluate the ability
of nonacoustic equations (56)—-(59) to describe the dynamics of the nonacoustic
fluctuating field in the compressible turbulent boundary layer. These equations are
autonomous, i.e. they do not depend on the acoustic field, which depends on the
details of the acoustic environment in which the boundary layer exists. So, if these
equations apply, they are a valuable tool for the numerical modeling of compressible
boundary layers.

It was noted when the governing equations (56)-(59) for nonacoustic fluctua-
tions were derived in appendix A, that the time derivatives in these equations are
slow time derivatives. However, by our assertion that the fast time derivative of
the nonacoustic quantity is caused by acoustic convection and that these terms
cancel at the orders of interest (see section A.1), these two terms can be included
in the corresponding acoustic or nonacoustic governing equations and the validity
of these equations will not change. This will eliminate the problem of acoustic con-
vection term being unaccounted for later, during the verification of decomposition
procedure in section 5.4. If these terms are included in the acoustic equations, as
is usually done in acoustics, they will increase the error in the acoustic velocity
equations by increasing the vortical part of the acoustic velocity time derivative
(see section 5.5 for details). Alternatively, they are included in the nonacoustic
governing equations. This has the effect of introducing a fast time derivative to the
nonacoustic equations. In most cases (e.g. turbulence model development) we are
only interested in the equations on the slow time scale, when (56)-(59) are valid.
However, when verifying the decomposition in section 5.4, the total time deriva-
tive will be evaluated, making it important that the fast component is included.
Resulting equations will be the same as (56)-(59) with acoustic convection terms

added.
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The derived governing equations for acoustic and nonacoustic fluctuations are
only valid and decoupled to a finite order, because the assumptions made to separate
them are invalid at higher orders. Consequently, there is no information about the
higher order coupling terms, except that their magnitudes are small relatively to the
magnitudes of the leading terms in the equations. No attempt will be made to assign
these higher order coupling terms to either acoustic or nonacoustic equations. After
the decomposition has been performed, these terms can be computed explicitly and
their magnitudes can be compared to the magnitudes of the corresponding leading
order terms to validate the consistency of the approach, nd to assess the strength
of the coupling.

The numerical decomposition is accomplished in stages, using the governing
equations for acoustic and nonacoustic fluctuations. The approach is to construct
fluctuating fields that will satisfy the acoustic and nonacoustic equations as closely

as possible. The chain of calculations used for the decomposition is outlined below.

5.1. Temperature and density decomposition. The starting point of the de-
composition is the determination of nonacoustic parts of temperature and density
fluctuations. Since the pseudosound contribution to temperature and density was
neglected in the equations (56)—(59), the nonacoustic temperature and density fluc-

tuations for which (56)—(59) are valid are given by:

T, =T ~T.-T., (64)
P =P — P — Ppsi (65)

where subscript ‘ps’ denotes pseudosound fluctuations. Pseudosound fluctuations

are defined to satisfy the linearized isentropic relations:
'}

o p
pps - (’Y _Il)‘T‘ + 0(5?)1 (66)

T, ==+ 0Ged); (67)
analogous to the isentropic relations (62)—(63) for acoustic fluctuations, with the dif-

ference being that pseudosound fluctuations are just the linear response to the non-

propagating incompressible pressure p. Substituting for pseudosound and acoustic
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fluctuations using (66)-(67) and (62)- (63) from (64) the final expressions for nona-

coustic density and temperature fluctuations are obtained:

p
p=p - —L— (68)
(y-1T
7
=7 -2 (69)
P

So defined, nonacoustic temperature and density satisfy the nonacoustic equation
of state (59) to the order required, by construction. The nonacoustic viscosity

fluctuations may be obtained from Sutherland law (6) with T,, = T + T/ as an

argument:
To\! 14T0/Tw \
! n 2 + su oo
= — ) . 70
o (( a ) Tnfo + Tou/Tom (70)
The nonacoustic specific volume fluctuations are defined as:
1 7
V= (—-) , 71
o (71)

where p,, = 7+ p;,. Finally, the corresponding acoustic parts of density, temper-
ature, viscosity and specific volume can be obtained by subtracting nonacoustic
parts from the total fluctuations. This will include the pseudosound component of
the fluctuations into the acoustic part. The pseudosound component can be sepa-
rated from the acoustic part later, after the decomposition has been performed, if

desired.

5.2. Velocity decomposition. The leading order nonacoustic pressure equation
(58):

Oup; _ y-1 0 T, \' 2(v-1e*( ,5 35 5 o
By - \ HBn — ijSij + 2[8i58,;; 72
Oz; Pr Re Ox;, ( oy, ) + Re (ﬂns jSij + 208 ]Snzy) (72)

P
is just a relation between nonacoustic divergence, nonacoustic heat flux and leading

order dissipation. Assuming that acoustic dissipation is negligible, the expression

for nonacoustic divergence is:

oul, y-1 98 oT,\' 2(y-1De*( ,5 % 5 o
= = |ty ———— | nSijSij + 2085855 )
dz; P Pr Redxy (# 83%) + 7P Re (,uns 3%+ u318”> (73)

where T, = T + T!, ptn = E + i, and nonacoustic temperature and viscosity

fluctuations are obtained in 5.1. This allows the divergence of the nonacoustic
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fluctuations to be determined. Since the divergence of nonacoustic fluctuating

velocity is known, the acoustic divergence can be obtained by difference:

5ulsk — % . au;zk . (74)
Ozry  Orp Oz

Now, apply the curl to the leading order part of the acoustic velocity equation
(60), neglect mean gradients and note that the terms varying on the slow time scale

don’t contribute to the acoustic equations at the orders of interest. The result is:
o '
En +(@-V))(Vxu,)=0, (75)

which is the statement that leading order acoustic vorticity is preserved in a frame
moving with the mean flow. So, the leading order acoustic velocity is irrotational at
all times, given that it was irrotational at time ¢ = 0. An acoustic velocity potential
s can therefore be introduced to obtain a Poisson equation for ¢, from (74):

ou'
Ay, = 8;: . (76)

Note that in the presence of strong mean gradients the acoustic velocity will not
be irrotational, so (76) will not be valid close to the wall in the boundary layer.
One also needs to specify boundary conditions for ;. Only the boundary con-
ditions at the wall and outer boundary are needed, since in the simulation data
being decomposed, periodic boundary conditions are imposed in stream-wise and
span-wise directions. At the wall and outer boundary (z = 0 and Zmaz):

Ops
Oz

=

2=0,zma=

(77)

2=0,2maxz

At the outer boundary, (77) reflects the fact that only acoustic velocity fluctua-
tions are expected outside the boundary layer. At the wall, (77) is just the no flow
through condition for acoustic and, consequently, for nonacoustic velocity fluctua-
tions. Since diffusion of the acoustic field is neglected in the acoustic equations, the
no-slip condition cannot be imposed on the acoustic velocity at the wall. This im-
plies that the tangential nonacoustic velocity will also be nonzero at the wall. After
solving (76) with (77) for ¢;, one may calculate acoustic fluctuating velocity from
its potential and nonacoustic velocity fluctuations by difference, thus completing

the decomposition of the velocity.
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5.3. Pressure decomposition. To decompose the pressure fluctuations we will
seek nonacoustic pressure that satisfies the divergence constraint, as is done in
incompressible hydrodynamics, the difference being that in our case the divergence
is not zero, but given by (73). Taking the divergence of the nonacoustic velocity
equation (57) one obtains:

0x;0x; V Oz; Ox;

’)’Ma2 0 auﬁn. 0 Aau’m 1 , Op ia_p;l '
4 <6t Oz * Oz; " Ox;  yMa? Vn or; *Va Oz; ) (78)

Op, 10V op, _

The equation (78) is nonlinear and can be solved by iteration. At each iteration,
essentially a Poisson equation for p;, is solved with nonacoustic specific volume on
the right hand side of (78) computed with p!, from previous iteration, starting with
total pressure fluctuations p’ as initial guess for nonacoustic pressure. To compute
the time derivative of the nonacoustic divergence, which is part of the right hand
side of (78), we take the time derivative of (73) noting that the nonacoustic viscosity
{n is a function of T3, only when computing the time derivative of viscosity. The
Poisson equation (78), when solved with appropriate boundary conditions, gives
the nonacoustic pressure fluctuation field.

The most straightforward boundary condition for p!, at the wall is obtained in the
same way that pressure boundary conditions are obtained for incompressible hydro-
dynamics; by evaluating the wall-normal nonacoustic fluctuating velocity equation

given by (from (57)):

° !
aul 3 aunB ! 1 8Pn ! 2 a;unsniij
2 4 (u =- ) 4 = | v, T
ot + (u] Oz; ) yMa? v ors + Re Oz; (79)

at the wall. The first term of the left hand side of (79) is zero at the wall because

of the boundary condition (77), and the second term is zero at the wall since the
velocity is zero at the wall. The boundary condition for nonacoustic pressurc at
the wall is given by:

ap;z _ _2__ aﬂngniij ,
" Re Ox;

52 (80)

z=0 z=0



THE NUMERICAL DECOMPOSITION OF BOUNDARY LAYER FLUCTUATIONS 25

This boundary condition is valid provided the wall-normal momentum equation
is satisfied at the wall. Analytically, it is, but in the numerical simulations, the
governing equations are not imposed on the boundaries, instead, the boundary
conditions are imposed. This leads to an anomaly, which is discussed in detail in
subsection 5.5.

The outer boundary condition is easier, because p!, is exponentially small there:

P, —o. (81)

Z=Zmaz
After p, has been obtained, it can be subtracted from total pressure fluctuations to
get acoustic pressure fluctuations. Pseudosound part of temperature and density
can now be separated from the acoustic part using the isentropic relations discussed
in section 5.1 if desired.

This step completes the procedure used for the decomposition of a turbulent
fluctuating field into nonacoustic and acoustic part. It should be noted that in the
homogeneous case, by imposing the vorticity free and isentropy conditions described
above on the acoustic quantities, one obtains fields that do indeed propagate as

acoustic waves.
5.4. Verification of decomposition.

5.4.1. Acoustic-nonacoustic pressure correlation check. Asymptotically, acoustic
and nonacoustic pressure fluctuations are of the same leading order. So, in princi-
ple, they can be strongly correlated. To check that this is not the case, acoustic-
nonacoustic pressure correlation coefficient is computed and presented in figure 3.
The correlation between acoustic and nonacoustic pressure fluctuations is weak, so

from this point of view the decomposition is producing meaningful results.

5.4.2. Weakly compressible nonacoustic governing equations check. While develop-
ing the decomposition procedure, our goal was to obtain nonacoustic variables
satisfying derived weakly compressible governing equations (56)—(57) as close as
possible. The last two of these equations are satisfied by construction, so the valid-
ity of the remaining two can be checked. We can compute the time derivative of a

given nonacoustic variable 8, from the nonacoustic governing equation. Also, this
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FIGURE 3. The profiles of acoustic-nonacoustic pressure correla-
tion coefficient Ry, for: Ma = 3 (——), Ma = 4.5 (-------- ),
Ma =6 (----).

time derivative can be determined by decomposing two fields separated in time by
small At and computing the time derivative as (3, (t + At) ~ 8,(At))/At. When
the time derivative of nonacoustic variables is computed this way, it includes the
the effect of convection by acoustic velocity (see section 5). Therefore, this time
derivative will be compared to the one from the governing equation with the acous-
tic convection included. If the decomposition is valid, then the difference between
these two estimates of the time derivative of 8,, will be small.

The governing equations for acoustic and nonacoustic fluctuations are only valid
to a certain order. For the velocity equation this is the order of coupling terms,
at which the assumptions made to separate the acoustic and nonacoustic equations
are no longer valid (see section 5). For the density equation, this is the order of the
explicitly neglected pseudosound terms. The sum of the terms at these orders have

been computed to provide an estimate of the error committed by neglecting them.
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The magnitude of these terms can also serve as a measure of how well the nona-
coustic equations can predict the evolution of turbulent flow. Of course, the higher
order terms are computed from the variables obtained by the decomposition, so this
measure will also depend on the validity of the decomposition. The performance of
the derived nonacoustic equations can be assessed independently by performing a
DNS simulation of the flow governed by these equations and comparing the results
to the DNS of a fully compressible flow. This validation, however, is beyond the
scope of the current paper.

The r.m.s. profiles of the time derivatives of nonacoustic velocity u), computed
both ways, the difference between them (error), the relative error and the sum of
higher order terms in this equation are presented in figure 4. The error is of the same
order as the sum of higher order terms, i.e. the error caused by the approximations
made in the decomposition is of the same magnitude as the intrinsic error present
in the equations due to the neglect of higher order terms. The relative error is
very small except very close to the wall (z* < 30), where it becomes as large as
20 percent at the wall. This is expected, since the assumptions made during the
decomposition become invalid close to the wall.

The r.n.s. profiles of the time derivatives for nonacoustic density p], and the
errors are presented in figure 5. The behavior of the error in the nonacoustic
density equation is completely analogous to that of the nonacoustic velocity.

It can also be relevant to compare the errors in the time derivatives to the mean
convective time derivatives D/Dt = d/dt + @;d/dzj. The mean convective time
derivatives in our case are factor of 15 smaller then corresponding time deriva-
tives. The errors in the nonacoustic equations, when compared to mean convective

derivatives, are still relatively small.

5.4.3. Acoustic velocity governing equation check. Here the errors in the acoustic
velocity equation (60) are presented. The order of validity of the acoustic velocity
equation is the same as that for the nonacoustic velocity and it is not influenced
directly by the neglect of pseudosound. The profiles of time derivatives and errors

for acoustic equation are presented in figure 6. The relative error in this equation
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) and relative error (oo oo) for:

is about 20-30% in the boundary layer, but it is very close to the sum of the higher

order terms throughout most of the boundary layer. The error is also approximately

the same as the error in the nonacoustic equation. Relative error in the acoustic

equation is so large simply because the acoustic time derivative is factor 10 to 20

smaller than the nonacoustic time derivative. Through most of the boundary layer,

the errors in both the acoustic and nonacoustic equations appear to be inherent
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FIGURE 5. The r.m.s. profiles of the time derivatives of nonacous-

tic density fluctuations pf, calculated from: the governing equation

( }, two subsequent in time data fields (-------- ), difference be-
tween them x20 (- - - -), magnitude of higher order terms x20
(----- ) and relative error (o 0o00) for: a) Ma = 3, b) Ma = 4.5,
c) Ma=6. )

to the splitting of the equation, rather then shortcomings of the decomposition

procedure, since these errors are nearly the same as the neglected higher order

terms.

5.5. Sources of error in the decomposition. In summary, there are two major

sources of error in the decomposition. The first, and probably the most important,
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of acoustic velocity fluctuations u/, calculated from: the governing
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ference between them (- - - -), magnitude of higher order terms
(=== } and relative error (cooo) for: a) Ma = 3, b) Ma = 4.5,

c) Ma = 6.

is the neglect of the mean flow gradients when asserting that acoustic velocity
is irrotational, and acoustic fluctuations are isentropic. Because of this, the time
derivative of acoustic velocity us obtained from two decomposed consequent in time
data fields will be irrotational as well. It is clear, however, that the time derivative
of us as determined from the governing equation (60) is not irrotational. Vorticity

is generated by interaction of the acoustic fluctuations with the mean gradients, and
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this is not accounted for in the decomposition. This inconsistency is responsible
for the elevated error in both the acoustic and nonacoustic velocity equations near
the wall.

The second main source of decomposition error is an anomaly in the DNS data
arising from the imposition of boundary conditions in the simulations. The de-
composition described above poses strict requirements on the DNS data used. In
particular, to avoid erroneous boundary conditions for the nonacoustic pressure
pl, at the wall, which is obtained from the governing equation for the wall-normal
component of fluctuating nonacoustic velocity, we require that the flow variables
satisfy the boundary conditions used in the simulations, as well as the governing
equations at the wall.

However, because of the nature of the numerical methods used to generate the
data and the way the boundary conditions were posed in the simulations, the gov-
erning equations are not satisfied at the wall in the DNS data. To overcome this
problem, temperature, pressure and density were adjusted slightly to satisfy the
governing equations at the wall. The boundary values of pressure, temperature
and density were left unchanged by this data correction, only the values at the
point next to the boundary were modified. A detailed description of the data
adjustment procedure is given in appendix B.

The efficacy of the data adjustment can be evaluated by examining the time
derivatives of the nonacoustic pressure (figure 7). The Ma = 4.5 case is presented
since it has the biggest x—y computational domain, which will make the impact of
errors in determining the pressure at the wall the largest. Here the r.m.s. of the p/,
time derivative is shown as determined by decomposing two fields separated by a
small time increment. When the anomaly is not removed by the data adjustment,
there is a large difference between this time evolution and that obtained from the pj,
governing equation, but the data adjustment eliminates most of this discrepancy.
Note however, that a data adjustment of this sort is undesirable; first because
it is artificial and will affect the subsequent evolution of the field, and second,

because even after the data adjustment there is no guarantee that the anomaly has
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pressure p!, computed from governing equation ( ) (provided
for reference) and from two subsequent in time data fields before

(----) and after (-------- ) the data adjustment (Mo = 4.5).

been eliminated completely. So, DNS data that doesn’t suffer from this problem is
needed.

The nonacoustic fluctuations defined by the decomposition satisfy the prescribed
governing equations. Also, the magnitude of higher order terms, reflecting the
intrinsic level of error introduced by use of weakly compressible equations, is small.
This supports the claim that the nonacoustic flow evolution is autonomous, i.e.
it does not depend on the acoustic field, and that weakly compressible governing
equations predict well the evolution of turbulent nonacoustic field. The elevated
error near the wall in the governing equation for acoustic velocity is primarily due
to the decomposition deficiencies discussed above, not the higher order terms, or

the equation itself. Efforts are under way to improve the decomposition.
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6. DISCUSSION AND CONCLUSIONS.

The numerical investigation of the DNS data of Maeder et al. [14] revealed the
presence of substantial acoustic fluctuations when an application of HFDH asymp-
totics derived by Zank & Matthaecus [28] to the compressible turbulent boundary
layer fluctuations was attempted. To study the role these acoustic fluctuations play
in the evolution of the nonacoustic field, the governing equations for the acoustic
and nonacoustic parts of the flow were derived in the limit of small Mach number.
These equations were then adapted to the case of small turbulence Mach number; to
serve as a basis of the numerical decomposition proposed for splitting the turbulent
boundary layer fluctuations into nonacoustic and acoustic parts. The numerical de-
composition procedure is consistent, in the sense that the resulting acoustic ficlds

satisfy the properties assumed for their derivation, to the order expected.

6.1. Decomposed quantities. The r.m.s. profiles of the acoustic and nonacoustic
fluctuations obtained by applying the decomposition procedure to the DNS data
are shown in figure 8.

Recall the ordering of acoustic and nonacoustic fluctuations postulated in sub-
section 4.1 (equations (14)—~(17)), in which acoustic fluctuations are an order smaller
than the nonacoustic fluctuations, except for the pressure and dilatation. The r.m.s.
profiles shown in figure 8 are consistent with this ordering throughout the boundary
layer. But, outside the boundary layer (z/3 > 2), acoustic fluctuations dominate as
expected. It is remarkable that this ordering appears valid even at Ma = 6, which is
beyond the accepted limits of validity for weakly compressible approximations such
as Morkovin’s hypothesis. The total (paw — p T w), nonacoustic (ppunw, — P & W)
Reynolds shear stress and the difference between them associated with acoustics
are also shown in figure 8, part f). The acoustic contribution to Reynolds shear
stress is very small, even at Ma = 6. So using the nonacoustic equations to predict

Reynolds stress in a turbulence model (say) is a viable approach.

6.2. Nonacoustic flow governing equations. The equations for nonacoustic
fluctuations (56)-(59) closely resemble the equations derived in HFDH limit, how-

ever in this case these equations govern only the evolution of the nonacoustic part
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of the flow. Of these equations, the compatibility condition (58) and the equation
of state (59) are satisfied by construction of decomposition procedure (see subsec-
tions 5.2 and 5.1), while the validity of the velocity and density equations (56) and
(57) was checked (see 5.4.2). The results indicate that these equations predict the
evolution of the nonacoustic field very well, except near the wall, where the error
appears to be caused by the deficiencies of the decomposition procedure for strong
inhomogeneities. The validity of these equations at high Ma is of great interest

since they can be used in turbulence model development.

6.3. Higher order terms. The sums of higher order terms in the fluctuating
velocity and density equations were presented in figures 4, 5 and 6. They are also
shown in figures 9 and 10 for the highest Ma data studied (Ma = 6), along with

the largest contributing terms. There are three classes of higher order terms in
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the fluctuating equations, which were not included in either the acoustic or the

nonacoustic governing equations. They are:

1. The neglected terms: The convection of acoustic density with nonacoustic

velocity u’n]-‘-glz’% in the density equation and the viscous diffusion of acous-
J

tic velocity %Vn% (ung"sij) in the velocity equation belong to this class.
Asymptotically, these terms are the most significant of the higher order terms,
so they should dominate the sum of higher order terms. This is the case
for density equation. The viscous diffusion term, however is smaller than

other higher order terms in the velocity equation, which is consistent with
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the assumption of acoustic diffusion being negligible. Also, since the govern-
ing equations are decoupled at this order, these terms clearly belong to the
acoustic equations and do not directly effect the nonacoustic fluctuations.

. Nonlinear acoustic terms: There are relatively significant higher order
u,

ou', . . ap!
and p; .2 in the density equation and V)% y

1 80

nonlinear acoustic terms u; 5

in the velocity equation. Asymptotically, these are the same order as the
coupling terms discussed below and their actual magnitudes are smaller than
the dominant terms.

. Coupling terms: These are the higher order terms involving acoustic and
nonacoustic variables that are present at the order where the governing equa-
tions are no longer decoupled. As mentioned in subsection 5, there is no
information about these higher order terms, except for the fact that their
magnitudes are small relatively to the magnitudes of the leading terms in
the equations. They cannot be assigned to either nonacoustic or acoustic
equations. These are the true coupling terms that couple the acoustic and

nonacoustic equations. In the density equation, the most significant coupling

’
dul

term is the interaction of acoustic density with nonacoustic divergence p’, T

which is of the same magnitude as the nonlinear acoustic terms discussed in
item 2, and smaller than the dominant term.

In the velocity equation, there are two coupling terms that are most sig-
nificant: the nonacoustic pressure gradient term Vs'%- and the viscous diffu-
sion term 'Rzévsla% (nSnij), both caused by acoustic density variation. The
nonacoustic pressure gradient term is asymptotically of the same order as
the nonlinear term involving acoustic pressure, discussed in item 2. Its ac-
tual magnitude is larger than one of the nonlinear term. This is caused by
the difference in the magnitude of acoustic and nonacoustic pressure in the
boundary layer. The nonacoustic pressure gradient term is dominating the
sum of higher order terms in the velocity equation, and its relative magnitude

is about 20-30% of acoustic velocity time derivative (see figure 6).
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In judging the importance of the neglected terms plotted in figures 9 and 10, it
is important to recall the magnitudes of the lowest order terms in the equations
as shown in figures 4 and 5. Particularly, the true coupling terms representing
interaction of acoustics with nonacoustic field as discussed in item 3 above are

quite small indeed.

6.4. Conclusions. The results presented in this paper suggest that the nonacous-
tic equations (56)-(59) are a valid description of the evolution of nonacoustic fluctu-
ations in a turbulent boundary layer, up to at least Ma = 6. Since these equations
are autonomous (i.e. do not include acoustic terms) they could be used as a sur-
rogate for the compressible Navier-Stokes equations, either for model development
or as a basis for numerical simulation. This would yield a very good description of
the turbulent fluctuations and their effect on the boundary layer (e.g. through the
Reynolds stress). Another important implication is that the nonacoustic (i.e. tur-
bulent) fluctuations are insensitive to the acoustic fields present in the flow under
consideration. The details of these acoustic fields depend on the acoustic environ-
ment in which the boundary layer exists. Insensitivity of turbulence to acoustics
is necessary if boundary layer turbulence at this Mach number is to have a mean-
ingful canonical state. Otherwise, the structure of the turbulence will depend on
the details of the acoustic environment, that is the characteristics of the flow or
geometry far from the boundary layer.

Our understanding of the lack of coupling between acoustic and non-acoustic
fields in the boundary layer must be qualified by the break-down of the analysis
very near the wall where the mean gradients are large. Also, there is a potential
coupling mechanism right at the wall since the no-slip boundary condition applies
to the sum of nonacoustic and acoustic fields, but not necessarily to the fields
individually.

This research was supported by AFOSR under grant F49620-97-1-0089. The
authors are grateful to Drs. T. Maeder and N. Adams for their generosity and
assistance in the use of their boundary layer data, and to Prof. M. Short for

insightful comments on a draft of this paper.
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APPENDIX A. EXTENSION OF LOW MACH NUMBER ASYMPTOTIC ANALYSIS TO A

FLOW WITH SUPERSONIC MEAN.

In this appendix, the extension of the low Mach number asymptotic analysis of
section 4 to the case of the supersonic boundary layer with moderately large free
stream Mach number (up to say Ma = 6) is discussed. Despite the supersonic
free stream Mach number, if the characteristic turbulence Mach number Ma; =
uf/ceo (Where uy is characteristic fluctuating velocity) of this flow is relatively small,
the turbulent fluctuations can fruitfully be considered to be weakly compressible.
In such a case, an analysis analogous to that of section 4 can be applied to the
fluctuating equations, with the small parameter based on the turbulence Mach
number.

There is a subtlety associated with the application of the asymptotic analysis of
section 4 to the fluctuations in a turbulent boundary layer. The difficulty occurs in

defining the zero Mach number limit being considered. The parameter describing

mean flow compressibility is the free stream Mach number, while the compressibility’

of turbulence is parametrized by the turbulence Mach number. So, the question
arises as to which of the two Mach numbers, or both of them should be used as a
small parameter in the asymptotic analysis for weakly compressible turbulence.

In a flow with nonzero mean velocity, such as a boundary layer, the ratio of char-
acteristic turbulence Mach number to the characteristic mean flow Mach number
is equal to the ratio of characteristic velocities, i.e. Ma;/Ma = uy/Uy. Therefore,
considering the limit as the turbulence Mach number going to zero, while the free
stream Mach number is finite (as in Ristorcelli [21]), will require turbulent fluctu-
ations themselves to go to zero. However, the only meaningful limit is when ratio
uy/Us stays finite, requiring both free stream and turbulence Mach numbers to go
to zero together.

For the case under consideration, the mean flow is supersonic, while the turbu-
lence Mach number is much less the one. In this case we may expect an asymptotic
truncation to be still a good approximation for the fluctuations, but not for the

mean. Alternatively, we could dispense with formal asymptotics and consider the
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development to be an order of magnitude analysis based on the observed magni-
tudes of fluctuations in the DNS data.

One more point worth discussing here is the dependence of the temperature on
the small parameter. It is known that for a boundary layer with an adiabatic wall
(or an isothermal wall with temperature set to the adiabatic recovery temperature
as in the data of Maeder [14]), the mean temperature variation and the temperature
fluctuations go to zero like Ma? (see [24]). This is inconsistent with the tempera-
ture scaling postulated for thermal fluctuations in 4.1, and with the observations
of relative magnitudes in the DNS data (see section 3). One way to overcome this
inconsistency is to consider a different limit in which both free stream and fluctu-
ating Mach numbers go to zero, but in which the mean temperature and density
variations across the bo.undary layer scale like Ma rather than Ma?. For example,
the wall thermal boundary condition could vary with Ma to accomplish this, so
that the wall is adiabatic or at the recovery temperature only for the Mach number
being analyzed.

Regardless of the interpretation of the asymptotic limit, the analysis analogous
to that of section 4 can be applied to the turbulent fluctuations, with small pa-
rameter being the turbulence Mach number. No scaling assumptions will be made
regarding the mean quantities, since the applicability of an asymptotic analysis to
the supersonic mean flow is questionable for the Mach numbers of interest. Instead,
the mean quantities will be considered order one. To perform the analysis, the gov-
erning equations (7)-(10) for turbulent fluctuations need to be rescaled with uy as

characteristic velocity.

A.1. Scaling. As in section 4.1 the analysis is begun by postulating the scaling of

the flow variables with the parameter &; = \/yYMa,:

&€
’ll.:é_—ﬂ'i"ll,,] +5t(u,t +u'a), (82)
t
p=P+¢€ (p; + ), (83)
T=T + &;T] + €T, (84)

p =P+ ep} + € po; (85)
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The mean velocity scale is kept uo, s0 a factor €/e; = Ma/Ma; = us [us appears
in front of @ in (82). Note that in this analysis ¢ = \/yMa is not a small parameter,
it is of order one. The fluctuations are treated analogous to section 4.1, i.e. only the

leading order scaling is specified. The viscosity and specific volume can be written

similarly:

=T+ €ptt + €5 iy, (86)

V=V + &V +€V); (87)
i

and the derivative with respect to t is given by:

9_190 .96
ot & Oty Ot;’

where t; = ugt*/d =t and t, = ceot*/(01/7) = t/e:.

(88)

Thermal, acoustic and incompressible parts of the fluctuations are defined to
have the properties described in section 4.1. The only modification is that (22) is
modified to account for the presence of the mean. Thus for any quantity S, its

nonacoustic parts B 1 satisfy:

9B; L 0B+8.0)\ , 0B+8.0\
8:;1 +€% <Uaj‘—amj—t1) ~ 0 (Etz (uaj”__gz_j_t—I—> ) . (89)

Therefore, fast time scale variation of the nonacoustic parts ﬂ;q ;1 is primarily due

to convection of A and Bi,r by fluctuating acoustic velocity.

A.2. Derivation of acoustic and nonacoustic governing equations. Now,
by analogy with section 4.2, we substitute (82)—-(88) into (7)-(10), collect the terms
of equal order in £; and using the properties defined in section A.l derive the
governing equations for acoustic and nonacoustic parts of fluctuations. So, the
acoustic equations for density, velocity and pressure fluctuations, and the acoustic

equation of state are then:

Ou
(8pa+ u]gp“+€p o -+ p—2 ‘”) +

Ot, 5‘3 oz,
op' op! oul\'
2 a ] a 7 aj 3 —
= <8t] + ( ]]a ) + <pt 823] ) + O(Et) 0’ (90)
8uai +eu auaz 4+ Vapa + V/ ap

Ot, 7 Oz Ox; * Oz;
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2(7 — 1) 19 o o o
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et (-pt T2 T+ T4l) ) + 0Ced) = 0 (93)

and the nonacoustic equations are:

a ¢ +a gu, +u’,]§p +
_P ' apt ! _ai 6ut]
E‘<6t1+( Ui G ) +utja$j +p oz, + (94)

oL\’ oul\'
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ou !
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2(yv—1 o of o o ! of ! !
(—Z%“ET‘) <2€ﬁ§ijstij + (25%51'1‘3”;) + (ﬁsmgnj) )) +0(e}) =0,

(Tp, + pT}) + ezt

& (= + (4T ) +0(D) = 0. (97)

The leading order terms of (90),(91) and (92) constitute the equations for acous-
tic fluctuations, linearized about the mean flow. Further, by combining equations

(90) and (92) one obtains:

7.0 .0 L 0N (Pa_Pa)_
o (6%3% " ot +€5$j> (ﬁ ’75) B

(P OB P 0P )
E4ET; ( 7 Oz, %7)2 7z, + O(e;). (98)

For boundary layer flow, the right hand side of (98) can be neglected except very
close to the wall, where mean density gradients may be significant. So, from (98)

it follows:

2o, =22 4 () = F—Lo 1 O(e)), (99)
P (y-1)T
which is just the isentropic relation between pressure and density fluctuations,

linearized about the mean. Substituting for p, in (93) from (99) one obtains:
/
iy =t +OGed), (100)

which is the isentropic relation between pressure and temperature fluctuations,

linearized about the mean.

A.3. Consolidated equations. Finally, the decomposed equations derived above
can be rewritten in a form that will be more useful in the numerical decompo-
sition discussed in section 5. They are rescaled with u., and as in section 4.3,
the nonacoustic parts of fluctuations are introduced (combined incompressible and
thermal fluctuations). For convenience, mean quantities are included in the nona-
coustic variables, i.e. nonacoustic variables consist of the mean and nonacoustic
parts of the fluctuations. Also, as in section 4.3, the pseudosound contribution
to nonacoustic temperature, density and divergence fluctuations is neglected. The
nonacoustic equations are then (56)—(59), presented in section 4.4 for convenience.

Note that the convective time derivative of incompressible pressure p} (terms in
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square brackets in (96)), was assumed negligible in (58). This derivative is assumed
to be responsible for generation of O(e?) pseudosound divergence, analogous to the
way pseudosound divergence is defined by Ristorcelli [21], and should not affect the
dynamics of the flow dominated by thermal effects. Also, again, as in section 4.3,
the time derivatives in (56)—(57) are slow derivatives.

The governing equations for acoustic fluctuations in the new notation are then
(60)—(63), presented along with nonacoustic equations in section 4.4. These equa-
tions are the equations for acoustic waves in the convective variable density medium
defined by the nonacoustic field. The acoustic and nonacoustic equations derived
in this section will serve as a basis for development of the numerical decomposition

procedure for boundary layer fluctuations discussed in the section 5.

APPENDIX B. DATA ADJUSTMENT PROCEDURE.

As discussed in section 5.5, in order for our decomposition to produce meaningful
results, the DNS data must satisfy the governing equations at the wall as well as the
boundary conditions. This is not the case in simulations of Maeder et al. [14] and
many other DNS, because the governing equations at the wall are usually discarded
in favor of imposition of the boundary conditions. The boundary conditions used
in the simulation of Maeder et al. [14] are no-slip and isothermal, so the governing

equations evaluated at the wall yield the following relations for temperature and

pressure:
d or _ 6Uk 2 o o©
52 (,u£> T Pr Re p@Tk — 2yMa*Prys;;jsi; " (101)
Bp 2’yMa2 6/1;3]'
et = 207 9 2
0z|,_, Re Oz o (102)

The relations (101) and (102) are obtained from the thermal transport and the wall-
normal velocity governing equations respectively. In this appendix, the procedure
used to adjust the DNS data to satisfy (101)-(102) is briefly discussed.

In making the adjustment, the temperature at the wall must remain unchanged,
since it is restricted by a boundary condition. This also means that the viscosity

at the wall will remain unchanged. To impose (101) then, the temperature at the
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first point from the wall is adjusted. Even though there is no boundary condition
for the pressure at the wall, the value of pressure at the wall was also chosen to
remain unchanged, so the pressure is also adjusted at the first point from the wall,
analogous to temperature, to satisfy (102). Given the difference scheme used to
approximate the derivative at the wall, (101) and (102) become equations for the
temperature and pressure at the first point from the wall. These equations are
coupled due to the presence of u in the derivative on the right hand side of (102).
Also, the equation (101) is nonlinear due to the presence of p in the derivative on
the left hand side. So, (101) is solved iteratively for the temperature at the first
point from the wall, and then pressure at the first point from the wall is determined
from (102). With new values of pressure and temperature, the density at this point
is determined from the equation of state.

When this adjustment is applied to the data of Maeder et al. [14], the changes
made to the temperature and pressure are relatively small. In the Ma = 4.5 case,
which is impacted the most by the data adjustment procedure, since it has the
biggest computational domain, the r.m.s. temperature change is 5% of the r.m.s.
temperature at the first point from the wall, and the r.m.s. pressure change is less
then 1% of the r.m.s. pressure at the first point from the wall.

It should also be mentioned here that the pressure, temperature and density
time derivatives were also adjusted in a similar manner using time derivatives of
conditions (101)—(102), while advancing the DNS field in time, to keep the govern-
ing equations satisfied at the wall at the next time step. This was done because,
as discussed in subsection 5.4, the decomposition verification relies on two decom-
posed subsequent in time data fields to obtain the time derivatives of decomposed
quantities.

December 4, 2000
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Resolution properties of B-spline and compact finite difference schemes
are compared using Fourier analysis in periodic domains, and tests based
on solution of the wave and heat equations in finite domains, with uni-
form and non-uniform grids. Results show that compact finite difference
schemes have a higher convergence rate and in some cases better resolu-
tion. However, B-spline schemes have a more straightforward and robust
formulation, particularly near boundaries on non-uniform meshes.
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1. INTRODUCTION

Many physical phenomena involve a broad range of spatial scales. One example is turbulent
fluid flows, which have a wide and continuous spectrum of length scales describing its compo-
sition of eddies of different sizes [2]. Simulation of these physical phenomena requires spatial
discretization schemes with high resolution, or in other words, schemes that can produce accurate
numerical results over as broad a range of length scales as possible for a given discretization.

In numerical simulation of turbulent fluid flows, spectral methods are attractive spatial dis-
cretization schemes due to their very good resolution properties. As a result, many direct numer-
ical simulations (DNS) have been performed with spectral methods in Cartesian coordinates with
various boundary conditions ( [4] and [14]). These include simulations of simple fundamental
flows such as isotropic turbulence, turbulent channel flows [20] and turbulent boundary layer [33].
One distinctive feature of spectral methods is that they use infinitely differentiable global basis
functions [4]. Two common choices are Fourier series expansions and polynomial basis functions,
with the first being applied to simulations with periodic boundary conditions and the second to
simulations in finite intervals ( [20] and [28]). However, the global character of the basis func-
tions also limits spectral methods to simple geometries and boundary conditions [23] and there

1
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is a great need for simulations in complex geometries. This is very important for turbulence
simulations to contribute to many engineering applications such as external aerodynamics and
propulsion systems. Such simulations would require spatial discretization schemes that not only
retain the good resolution properties of spectral methods, but can also provide flexibility with
respect to geometries, boundary conditions and grid distribution.

Local numerical representations, such as finite difference and finite element schemes, have much
greater flexibility in discretizing complex geometries, so high resolution schemes of these types
would be of great interest. For example, Lele has studied compact finite difference schemes for
use in problems with a broad range of spatial scales [23], using Fourier analysis to investigate
how well the schemes represent a range of wave numbers. There has also been a trend to combine
local discretization algorithms and spectral methods. A typical example of such a confluence of
numerical algorithms is the spectral element method which is based on finite element and spectral
methods [18],[19] ,[27].

Another choice for local numerical representation is to use splines. Unlike finite difference
methods, spline methods are functional expansion methods that make use of a set of local ba-
sis functions. This property provides us with a straight-forward way to implement boundary
conditions. Spline methods are similar to finite element methods as they both use piecewise
polynomial representations. However, spline methods use basis functions that retain a higher
degree of continuity. In short, spline methods have much of the flexibility afforded by the use
of local expansions, as in finite elements, and have the resolution advantage afforded by highly
continuous expansions, as in spectral methods.

In the research reported here, we investigate the properties of spline methods, in particular
spline collocation methods, and their relation to finite difference and finite element methods. Sec-
tion 2 introduces the basic properties of spline, compact finite difference, finite element methods
and their different formulation. The basic resolution properties of these spatial discretization
schemes are presented in Section 3 using Fourier analysis in periodic domains. Of particular
interest is the approximation to the first and second derivative operator, which are common in
equations describing many physical phenomena. In Section 4 and Section 5, the wave equation
and heat equation are solved with spline collocation and compact finite difference schemes in
bounded domains, in both uniform and non-uniform grids. Concluding remarks are given in
Sections 6.

2. NUMERICAL REPRESENTATIONS

The resolution properties of the numerical methods discussed here are most easily understood
in one spatial dimension. Thus, the methods to be evaluated are introduced here in their one-
dimensional form. Spline methods, compact finite difference methods and finite element methods
will be discussed.

2.1. Spline Methods

Consider a domain divided into NV intervals, a one-dimensional spline is defined to be a poly-
nomial of degree d in each interval that is continuously differentiable d — 1 times at the interval
boundaries. The boundaries of the intervals are called knots.

Spline methods have been used before to solve differential equations and fluid mechanics prob-
lems( [13], [29] and [30]). The work of Kasi Viswanadham and Koneru [37] and Davies [6],[7]
used B-splines as basis functions and the Galerkin formulation. Most of the research, however, is
confined to cubic splines (d = 3). More recently, Kravchenko etal. [21] and Shariff and Moser [32]
used the basis functions of splines to solve partial differential equations and simulate turbulent
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FIG. 1. B-splines Bg(z) on uniform knots with knot spacing Az =1, with (a) d = 0,1,2 and 3; and with
(®)d=2 and i=1,2and 3.

fluid flows. In particular, mesh embedding techniques are developed to make basis spline methods
very effective in solving physical problems in complex geometries.

To use splines as a representation for the solution of a partial differential equation, it is necessary
to have a convenient basis for the space of spline functions under consideration. Here the so
called basis splines or “B- splines” as described in [8] and [16] are used. A B-spline is defined as
a normalized spline which has support over the minimum possible number of intervals. In fact, it
has support on only d + 1 intervals. As an example, the B-splines B¢ for uniformly spaced knots
are plotted in figure 1 (a) for d up to 3. By using a basis with support on the minimum possible
number of intervals, minimum bandwidth of the resulting matrices is ensured.

Near a boundary, the basis splines are different than those in figure 1(a) since the presence of
the boundary removes the constraint that the B-splines have d — 1 zero derivatives at the edge
of its interval of supports. An example of the quadratic B-splines near the boundary is shown in
figure 1(b).

To use the B-splines in a practial computation, one needs to evaluate them and their derivatives
at points in the domain. This will be sufficient to compute the various matrices representing
different linear operators. An efficient and stable technique to evaluate the B-splines and their
derivatives is the recurrence relation described in [8]. Both interior and boundary splines are
generated this way by formally introducing a multiplicity of knots at the boundary (see [8]).

Consider the B-spline representation of a possibly non-linear spatial operator F operating on
¢. We first postulate an expansion for ¢ in terms of B-splines of order d on a selected knot set:

#(o) ~ 3(@) = 3 auBi(@) )

An approximation F to the operator F is sought that maps splines in Sy (i.e. ) to splines in
Sy, where Sy is the space of splines of order d for the selected knot set. That is

F(P) ~F(¢)=7=> _ BiBl(z) (2)

i

There are several ways to generate such an approximation. Two will be considered here, namely
Galerkin and collocation methods.
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2.1.1. B-spline Galerkin Methods
In the Galerkin formulation, the approximation of the linear differential operator D on ¢ is
given by

( ]’7) ( ) j:172>"'7N( (3)

where (f,g) denotes the L, inner product [ fgdz in the domain and N, is the number of B-
splines. This forces the error in 4 to be orthogonal to S4, thus minimizing the Ly error in this
space. Given the linearity of D and the representations of D, ¢ and 7, the above equation can
be written

N¢
> B:«(Bf,Bf) = Za; D(BY)) ,j=1,2,...,N (4)
i=1

The inner products of equation (4) are the elements of matrices M and D, with M;; = (Bf, BY)
and D;; = (B{, (Bf)) The matrix M is called the “mass” matrix and D the operator matrix.
To obtain 4 given ¢ one solves the linear system M8 = Da. Note that both M and D are banded
matrices since individual B-splines have only local support. The bandwidth w of the matrices is
given by w = 2d + 1.

2.1.2. B-spline Collocation methods
The collocation formulation imposes different requirements to obtain the coefficients ;. Here
the approximation ¥ = ), B: B¢ of the operator D on ¢ must satisfy

¥=D¢ atz=¢(, j=1,2,...,N¢ (5)
which implies
N¢ N¢
ZﬁlBZd:ZQZD(Bzd) atx=<]7.7=172;7NC (6)
i=1 =1

The values of the b-splines and their derivatives are the elements of the matrices M and D
respectively, with M;; = BE({;) and D;; = [D(B{)](¢;). Again, given ¢, ¥ is found by solving the
linear system M = Da. Using the collocation formulation, the matrix bandwidth w is given by
w =d.

2.1.8. Selection of Knots and Collocation Points

To use B-splines in a computation, one first needs to determine the location of the knot points
and for the collocation method the collocation points. In a periodic domain with N uniform width
intervals, there are N knots and N splines spanning the spline space. Therefore, N collocation
points are needed in a collocation scheme. There are only two locations for the collocation
points that preserve the spatial symmetry of the operators : collocation points at the knots, and
collocation points at the center of the intervals. The former is appropriate for odd-order splines,
the later for even (see below).

In a non-periodic domain, it is more complicated. There are N intervals, N + 1 distinct knots
and N +d collocation points are needed. There are two basic ways to select knots and collocation
points in a finite domain. The first is that N 4+ d collocation points can be selected by whatever
resolution criteria are appropriate and then N + 1 of these points can be chosen to be the knots.
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Generally those collocation points that are not knots are near the boundary, though the knot
at the boundary is retained. This is referred to as a “not-a-knot” condition, which is commonly
used in spline interpolation.

The alternative is to start by selecting the knots according to some resolution criteria. This is
more natural since the knots directly determine the spline space and therefore are more closely
related to resolution than the collocation points. Furthermore, in a Galerkin scheme all one selects
are the knots, so direct comparison of Galerkin and collocation is only possible if one starts by
selecting the knots. Selecting the collocation points can then be done in several ways, but there
are two choices that seem particularly appropriate : place a collocation point at the maximum of
each B-spline function or place it at the centroid of each B-spline function. These prescriptions
have the advantage that they are applicable throughout the domain (nothing special about the
boundary), and they associate a collocation point directly with each B-spline function. This later
property is useful for applications in multidimensional embedded grids of the type described by
Shariff and Moser [32]. Note that with uniform knots away from the boundary, the symmetry
of the B-splines places the maxima and centroid at the same location : at the knots or at the
center of the intervals for odd and even splines respectively. In the current paper, collocation
points at the B-spline maxima are selected, because this naturally places a collocation point at
the boundary, which is useful for imposing boundary conditions. Two knot distributions are used
: uniformly spaced knots and non-uniform knots distribution according to :

(N-1)
x=0_5{1_M} (7

cos[m NL_H]

where £ = j/N for j =0,1,---N. This non-uniform grid is basically a Chebyshev grid with the
boundary singularities removed. It is denser near the boundary.

2.2. Compact Finite Difference Methods

Compact finite difference schemes have long been applied to fluid mechanics and other physics
problems [17],[22], [31]. Recently, higher order compact finite difference schemes have seen in-
creasing use in the direct numerical simulation of complex fluid flows ( [12] and [26]). Lele
presented a comprehensive study on the compact finite difference methods [23]. Consider a uni-
form mesh where the nodes are indexed by . The independent variable at the nodes is z; and the
function values at the nodes v; = v(z;) are given. The compact schemes are derived by writing
approximations of the form :

Bvi_s + avj_y +v; + aviyy + Bui, = (8)
Vi+3 — Vi3 Vit2 — Vi-2 Vit+1 — Vi-1
c b
6Az + 4Az ta 2Az

Similarly, approximations to the second derivative operator are derived by the following rela-
tionship :

Bui_o + aviy + v + iy + BV, = 9)
Viy3 — 20; + V-3 4 plir2 = 2v; + ;2 s 2v; + Vi1
9(Az)? 4(Ax)? (Az)?




6 W.Y.Kwok, R.D.Moser, and J.Jiménez

TABLE 1
Table of coefficients for discretized first derivative operators using compact finite
difference schemes. The approximations have the form Z,‘ o;(fiy; +

Fiog) + Fi = ;0 MR

27jAx
Band- Order a; a2 a3 o 71 Qs a1 a2 a3 a4 as
width
3 4 i 0 0 0 0 3 0 0 0 0
4 1 40 25
; 5o w90 0y 000
7 12 % 100 30 0 0 i 250 3200 0 0
9 16 16 4 16 1 0 144 152 10704 761 0
25 25 1225 4900 125 125 42875 85750
1 20 25 100 25 25 1 55 12760 5115 23045 7381
36 441 784 15876 63504 5 9261 10976 500094 8001504

The relations between the coefficients a,b,c and a, are obtained by matching the Taylor
series coeflicients of various orders. Higher orders can be obtained by including more nodes in
the above two equations.

In this study, compact schemes with the same stencil size on both sides of the equations are
selected (¢ = 0 in equations (8) and (9) for example). This is because mass and operator matrices
with the same bandwidth is a property shared by B-spline methods. All the coefficients then
are used to match the Taylor series to as high an order as possible. The value of the coefficients
are listed in tables 1 and 2 for schemes with matrix bandwidth w up to 11. Note that since
no restriction is imposed on the coefficients other than those from Taylor series matching, mass
matrices associated with the first, second and higher derivatives are all different. This issue will
be addressed in more detail in Section 6.

2.3. Finite Element Methods

Most of the finite element applications in fluid dynamics use the Galerkin finite element formu-
lation [11]. The application of the traditional finite element method to fluid mechanics is treated
by Thomasset [35] and Baker [1].

In this study, the standard one-dimensional Cp finite elements are used. As with B-splines,
the finite elements are polynomials on a series of knots (element boundaries). However, because
only Cp continuity is imposed, there are many more degrees of freedom per interval (element).
If there are N intervals then there would be dN degrees of freedom, where d is the degree of
the polynomials. In this paper, only finite element Galerkin methods are considered, though
collocation methods are also possible. Note that this method of increasing the local degree of
the polynomial shapefunction is very similar to the “p” finite element method [10], in which
an element may neighbor an element having different polynomial order. The main advantage
of finite element methods is flexibility with respect to geometry. Its weakness is resolution.
In most applications of finite element methods, elements are typically chosen to be at most
quadratic ([3], [9]), and consequently, great accuracy is usually difficult to achieve. This is
exactly opposite to the characteristics of spectral methods. The intention to combine these two
methods comprehensively leads to the development of spectral element methods [19],[27]. Spectral
element methods are basically variational domain decomposition techniques. The computational
domain is broken up into macro- elements within which variables are represented as high-order



Resolution Properties of B-spline and Compact Finite Difference Methods 7

TABLE 2
Table of coefficients for discretized second derivative operators using compact
finite difference schemes. The approximations have the form ZJ. o (fil;+

fiqyi—2fi+Fiy;
Fil;)+ i = Z,- aj—""’—jma—ﬂ

Band- Order o as as 4 as
width

3 4 0.1 0 0 0 0

5 8 2.91773 x 10™'  9.75403 x 10~3 0 0 0

7 12 4.54859 x 10~!  5.07012 x 10™2  8.53431 x 10™* 0 0

9 16 5.70136 x 10~}  1.12742 x 10!  6.74436 x 10™3  6.85946 x 1075 0

11 20 6.48365 x 10”1 1.80383 x 10~!  2.03536 x 10™2  7.63768 x 10~*  5.21170 x 10™°
Band- Order a1 as as a4 as
width

3 4 1.2 0 0 0 0

5 8 8.14249 x 10~'  7.88804 x 107} 0 0 0

7 12 3.63508 x 10~} 1.44465 2.04670 x 10~} 0 0

9 16 7.96376 x 10~ 2 1.60567 6.58960 x 10~!  3.51163 x 10~2 0

11 20 —7.02859 x 10~2 1.47231 1.12003 1.72919 x 10~ 4.77013 x 1073

polynomial expansions [18]. The work of Patera [27], Karniadakis [18] and their co-workers
illustrates the application of spectral element methods in partial differential equations and fluid
mechanics problems.

2.4. Basis for Comparison

To compare the resolution properties of the several spatial discretization schemes discussed
above, it is necessary to define the basis of comparison. The question is : comparing B-spline,
finite element and finite difference methods, what characteristics of these methods (i.e. what
degree polynomials, or what stencil size) should be compared. In this paper we take the view
that comparison should be done between schemes with matrices that have the same bandwidth.
The bandwidth of the matrices is an indicator of the computational cost of the scheme, so methods
with the same cost are compared.

3. FOURIER ANALYSIS

In this section, a Fourier analysis of the errors associated with the approximation of differential
operators by the several spatial discretization schemes discussed in section 2 is presented. The
resolution properties of the numerical schemes are most directly investigated using a Fourier
analysis ([23], [24], [25], [34], ([36]) ,in which the approximations of the operators in a periodic
domain with a uniform grid are compared.
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3.1. Effective Wave Number and Eigenfunctions
One common measure of how well a differential operator is approximated is the effective
wavenumber. In a periodic domain, the eigenfunctions of derivative operators are the complex
exponentials, and the eigenvalues of the nt" derivative are (ik)" where k is the wavenumber of the
complex exponential and i = v/—1. The effective wavenumbers k are obtained from the eigenval-

ues of the approximate derivative operators M 1D as I::J' =1 ;v\,,i, where J; is the jt* eigenvalue

of the approximate operators. For central schemes like those studied in this section, k is real.
Perhaps more important than the effective wavenumber is the error in the eigenvalue |A — (ik)"|.
Also of interest is how closely the eigenfunctions of the approximate operator correspond with
the exact eigenfunctions (the complex exponentials).

While the effective wave number has been widely studied as an indicator of the accuracy
and resolution of approximate derivative operators, the accuracy with which the eigenfunctions
of the operators (the complex exponentials) are represented has not generally been considered.
One reason is that in finite difference methods, the circulant nature of the operator matrices
assures that the eigenfunctions of the operators exactly represent the values of e?** at the finite
difference grid points. However, with methods based on functional representations, one can
measure the Ly errors || et*® — 16,() ||, where v;(z) are the approximate eigenfunctions. Again
since the matrices M and D are circulant, regardless of what derivative is being approximated, the
approximate operator has the same eigenfunctions for all derivatives. It can be shown that these
approximate eigenfunctions are also the same as those obtained by directly approximating the
complex exponential, using the method under considerations (spline or finite element, Galerkin
or collocation).

3.2. Comparison of Accuracy and Resolution

The numerical schemes tested using Fourier analysis include B-spline collocation and Galerkin
formulations, finite element Galerkin formulations, and compact finite difference methods. Effec-
tive wavenumbers associated with the first and second derivatives for the four methods discussed
here are shown in figures 2 and 3 respectively. Notice that the wavenumber is normalized by the
maximum wavenumber k., representable with the numerical method. For the spline and finite
difference methods kmaez = A5, where Az is the grid or knot spacing. For the finite element
schemes, knor = %, since there are d degrees of freedom per element.

There are several things to note about the effective wavenumbers. First, for a given matrix
bandwidth w, k is identical for B-spline collocation and Galerkin methods. This is despite the
fact that for collocation the order of the splines is higher (d = w) than for the Galerkin (d = %71).
This identity had been noted before by Swartz & Wendroff[34]. Second, for a tridiagonal matrix,
the finite element scheme (linear elements) is identical to the spline Galerkin method (linear
splines). For first derivatives, the effective wavenumber is also the same as that for compact
finite difference, which is the 4" order Pade scheme. For the second derivative, however, they
are different. Finally, the high-order (large bandwidth) finite element effective wavenumbers
depart suddenly from the exact result, effectively limiting the range of wavenumbers for which k
is a good approximation of k.

The errors in the eigenvalues | — (ik)?| for the first and second derivatives, and those in the
eigenfunctions are plotted in figures 4, 5 and 6 respectively. In comparing the different methods,
the most obvious difference is the rate of convergence at small k: these curves asymptotically
approach zero according to their theoretical convergence rate as shown in table 3.
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For bandwidth equals 3, the three schemes yield the same result.

-, finite element Galerkin;

, exact differentiation.
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For bandwidth equals 3, b-spline and finite element yields the same result.
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yield the same result.

Note that the compact finite difference convergence rate is significantly faster for large w. This
is possible because in the finite difference method, the “mass” matrix can be different for each
order derivative. In contrast, by the nature of functional expansion methods, the mass matrix is
the same for all derivatives that can be determined from the representation. If this restriction
were imposed on the compact finite difference methods, the same order of convergence as the

spline and finite element methods would be obtained.

TABLE 3
Order of convergence of the errors of eigenvalues and eigenfunctions. w is

the matrix bandwidth.
Numerical Eigenvalue Eigenvalue Eigenfunction
Scheme of the first of the second

derivative derivative

operator operator
finite element Galerkin Evt? Eett B
B-spline Galerkin fw+? v+t K
B-spline collocation Ewt? gt Eet?
compact finite difference Ere-t kv N.A.

The other property of the approximate operators is the behavior of the error at large k. This is
important because it determines the range of spatial scales that can be resolved by the numerical
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b-spline and finite element yields the same result.

method. There is no commonly used measure of this resolution property of numerical methods.
One measure proposed by Lele [23] is the lowest wavenumber (k/knq2) at which the error crosses
some arbitrary threshold (say 0.1), giving the fraction of the maximum wavenumber range that
is represented to this accuracy or better. In table 4, this resolved fraction for 10 % error in the
eigenvalues and eigenfunctions is listed for the numerical schemes discussed.

Despite the fact that the order of convergence for the finite element and spline effective wave
numbers is the same, the errors in the spline methods are much lower at any given k. In essence,
the spline methods have better resolution. This is indicated by Lele’s resolution measure as
shown in table 4. The reason for the relatively poor resolution of the finite element is the low
(Co) continuity at the element boundary. One way to understand this (for the first derivative) is
to imagine a high order finite element function u evolving according to the scalar wave equation:
%‘f + c%;i = 0. At the initial time there are discontinuities in first derivative at the element
boundaries. The exact solution would have these discontinuities propagate into the middle of the
element, where they cannot be well represented, leading to relatively large errors. This scenario
suggests that maximum possible continuity at the knots, that is splines, is desirable.

The uniform grid periodic analysis is informative, but it does not address two key issues
commonly encountered in numerical simulations, that is nonuniform grids and boundaries. The
behavior of finite difference methods in particular is at issue since the formulation discussed in
section 2.2 does not apply directly in these cases. Also, the result that the eigenfunctions of the
derivative operators are recovered exactly (section 3.1) will not hold. It is thus of interest to
consider model problems in finite domains. Two such problems are discussed here, namely the
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bandwidth equals 3, b-spline Galerkin and finite element Galerkin yields the same result.

TABLE 4
10 % resolved fraction for eigenvalues of first and second derivative operators,

and eigenfunction representation.

d/dz d?/dz?
Band- B-spline Compact Finite Band- B-spline Compact Finite
width finite element  width finite element
difference  Galerkin difference  Galerkin
3 0.59 0.59 0.59 3 0.34 0.68 0.34
7 0.80 0.84 0.82 7 1.00 0.94 0.57
11 0.87 0.90 0.54 11 1.00 0.99 0.59
Eigenfunction
Band- B-spline B-spline Finite
width  collocation Galerkin  element
Galerkin
3 0.68 0.46 0.46
7 0.84 0.72 0.48
11 0.89 0.81 0.53

wave and heat equation. They will only be applied to the B-spline collocation and compact finite
difference schemes, the two best methods discussed above.
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4. WAVE EQUATION IN BOUNDED DOMAINS

In this section, B-spline collocation methods and compact finite difference methods are used
to solve the wave equation in non-periodic domains. The problem is defined as

us+u, =0 for0<z <1,
u(0,t) = exp(—ikt) (10)

The exact solution assuming periodicity in time is
u(z,t) = exp(ik(z — t)) (11)

For numerical solution, it is assumed that u(z,t) takes the form u(z,t) = v(z)exp(—ikt) and
solve the following equations for v(z) :

. dv
thv = e
v(0) =1 (12)

The equation is discretized with B-spline collocation and compact finite difference schemes on
both uniform and non-uniform grids.

4.1. B-spline Collocation Formulation

As mentioned in section 2.1.3, collocation points at the B-spline maxima are selected. In
general, using this “B-spline maxima” collocation formulation with splines of order d, matrices
with d + 1 non-zero diagonals will be obtained. In the case of uniform grids away from the
boundary, there are only d non-zero diagonals as the maxima of splines coincide with the knot
points. After discretization, a matrix equation iwMa = D;a is obtained, where M and D, are
the mass and first derivative operator matrix, and « is the B-spline coefficient vector.

The boundary condition is implemented by replacing the operator at the boundary collocation
point with vy = 1.

4.2. Compact Finite Difference Formulation

Lele presents a comprehensive study of high resolution finite difference schemes [23]. In his
paper, the effective wavenumber in a periodic domain is investigated. For domains with non-
periodic boundaries, the same analysis is used to obtain the effective wavenumbers both for the
interior and the special boundary schemes. The effective wavenumbers for the boundary schemes
are in general complex, with the real part associated with the dispersive error and the imaginary
part associated with the dissipative error. The conservative formulation, eigenvalue analysis and
stability limits for explicit schemes are also presented. For the details, the reader is directed
to [23].

In this section, two issues are addressed. The first is an alternative approach to studying the
boundary formulation, instead of the effective wavenumber analysis of Lele. The second is the
formulation of schemes with non-uniform grids. The same problem is then solved which offers
direct comparison with the B-spline collocation method.

4.2.1. Boundary formulation
To discretize the hyperbolic equation, the numerical schemes need to resolve the traveling waves
in the domain. The boundary formulation is studied using normal modal analysis. Normal modal
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analysis is also used by Carpenter et al [5] to investigate the stability of boundary treatments
for compact finite difference schemes. The similarities of these two analyses will be pointed out
after the description of the current boundary formulation.

In the interior, the compact finite difference approximation of the first derivative is.derived
from equation (8), which can be rewritten more generally as :

m m
Uv 4 — v._ .
v+ (vl +vig) =) e (13)
: : JAT
j=1 J=1
where m is related to the matrix bandwidth w by m = ’-"—2_—1- Knowing that v’ = ikv, the
following expression is obtained :

m m
Z CjVi—j + ikv; — Z Cj*UH.j =0 (14)

where ¢; = %;— +ia;kAz and ¢;* is the conjugate of c;. This can be interpreted as a linear recur-
sion relation for v;. Such a recursion has solutions A7, where A is a function of k. Substituting
v; = AJ into equation (14), the characteristic polynomial is obtained :

m . m .
> AT ik =) "M =0 (15)
j=l j:l

which has 2m roots. In general, if A, is a root, then A_ = A,* ! is also a root. These root

pairs are denoted as type I root pairs. If [A| = 1, A = A*~1. In this case there can be two
independent roots. These roots are denoted as type II roots. In the limit £ — 0, equation (15)
has the form

m
3 %(A‘j —A)=0 (16)
=1 J
which always has the solutions
A-A"1=0=A==1 (17)

Changing notation to that of effective wavenumbers,
.z .z k
A = exp(tkAz) = u(z,t) = exp (zk(z - ;t)) (18)

type I root pairs correspond to conjugate pairs of complex effective wavenumbers k and k*, while
type II roots yield real k. Conjugate pairs of complex effective wavenumbers represent a pair
of solutions, one of which grows exponentially in amplitude to the right, the other to the left.
Also, for k = 0, the two solutions yield £ = 0 and k& = kmae. Clearly, of the 2m solutions,
only one solution with real k can be a valid approximation to the exact solution. The remainder
are spurious. When equation (13) is used to solve equation (12), the coefficients of the various
solutions are determined by the boundary conditions and special differencing schemes used near
the boundaries. Clearly, the boundary schemes should be chosen to make the amplitudes of
spurious solutions as small as possible.




16 W.Y.Kwok, R.D.Moser, and J.Jiménez

To see how this works, consider the tridiagonal and pentadiagonal interior scheme (see table
1). For these two cases, the coefficients in the characteristic polynomials and their corresponding
roots are given in table 5. As and A3 are complex conjugate pairs while Ag and A; have magnitude
1. Ap represents the approximation to the exact solution exp(ikAz) to the order associated with
the scheme and it has a positive group velocity. A; is a spurious wave with a negative group
velocity. A, and Aj are spurious waves growing exponentially in magnitude to the right and left
respectively. For the spurious waves that grow exponentially to the right, the magnitude of the
waves is largest at the right boundary. Thus, by arranging the right boundary schemes to make
the Ay wave (for example) small at the right boundary, the A, solution is small everywhere,
regardless of the length of the domain. Similarly waves growing to the left (e.g. As), should
be controlled at the left boundary. For waves with |A| = 1, or equivalently real k, the “group
velocity” v, = dk/dk determines which boundary should control the wave. With positive group
velocity, the left boundary controls the wave because when solving the transient problem (10),
information from the boundary will propagate into the domain from the left. Similarly, waves
with negative group velocity are controlled at the right boundary. Thus the spurious solution A,
will be controlled by the right boundary scheme, while the physical boundary conditions at the
left boundary will control the physical solution Ayp.

To determine the appropriate inflow boundary schemes, consider the general solution, which
near the inflow boundary can be written as

vj = poAd + paA] + O((kAz)™) (19)

where n is the order of the error in the interior scheme (5 or 9 for tridiagonal and pentadiagonal
schemes respectively). Note that for the tridiagonal scheme, Ay and A3 can be considered to be
zero. The O((kAz)™) term is the contribution of the A; and A, waves, which will be this small by
construction of the right boundary schemes. Using this expression, the left boundary schemes are
constructed to make pp = 1 + O((kAz)") and ps = O((kAz)™) (for the pentadiagonal scheme).
This is accomplished using schemes of the form

m-+i Im—1

1
E ;v = s E aijv; for0<i<m-—-1 (20)
Jj=0 j=0

for the first m = %=1 points, except for the boundary point (¢ = 0) which is replaced by the
boundary condition vg = 1. The coeflicients for bandwidth 3 and 5 (m = 1 and 2) are shown
in table 6. A Taylor series analysis of these schemes shows them to be of the same order as
the interior scheme, and indeed this is how they were derived. This appears to be a sufficient
condition for the suppression of the spurious waves to the desired order, though the theory of
Gustafsson ([15] and [5]) implies that boundary schemes one order lower that the interior should
be adequate.
Near the outflow boundary, the general solution can be written similarly to (19)

un—1 = PhAG" + PIAT 4+ PhAS! + O((kAz)™) (21)

where p} = p;AY and N is the grid number of the right boundary. Boundary schemes that are
“mirror images” of the left boundary scheme result in p] and p, = O((kAz)™) (pentadiagonal
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TABLE 5
Coefficients and roots of characteristic polynomials. The various coefficients
in the expressions for A are given to four digit accuracy.

TABLE 5a

Coefficients of characteristic polynomials

Band- ci c2

width

3 3+ LikAz N.A.

5 2 + jikAz 2= + wikAz
TABLE 5b

Roots of characteristic polynomials

Band- Ao A A A3
width
3 exp(ikAz) ~1.0000 N.A. N.A.
+0O((kAz)5) +0.3333 ikAzx
+0.0555(kAz)% 4 - - -
5 exp(ikAz) —1.0000 —6.2397 —0.1603
+O((kAz)®) +0.1636 ikAx +1.1118 ikAz +0.0286 ikAz
+0.0134(kAz)? + - - - —0.0733(kAz) + - - - +0.0070(kAz)? + - - -

scheme). Thus we have

m+N—i 1 3m—N+i
Z aN—; J'U}V—-j =z Z —QN—; jUN—j for N>i>N-m+1 (22)

where again the coefficients are given in table 6.

The boundary scheme analysis presented here is similar to the GKS stability analysis of bound-
ary treatments in Carpenter et al [5], in which a similar model problem is used and in which
the same spurious waves are treated. However, in Carpenter et al, the assumed temporal form of
the solution is more general in that the frequency & (in our notation, see (10)) is allowed to be
complex. The concern is then whether the time-periodic solutions of (10) of the form used here
are stable. For the fourth order tridiagonal scheme, Carpenter et al show the combined interior
and boundary schemes to be GKS stable, but they do not treat the eighth order pentadiagonal
scheme discussed here. It seems plausible that interior and boundary schemes that consistently
suppress the spurious waves as discussed here will be GKS stable. But this remains to be seen.

4.2.2.  Non-uniform grids

Another issue that needs to be addressed is the formulation of the compact finite difference
scheme with non-uniform grids. The approach is to apply a mapping which uses the uniform mesh
scheme in the mapped coordinate. The mesh mapping is given in equation (7). The discretization
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TABLE 6

Coefficients of the boundary formulation for the first derivative.

Band- i aio i1 Qaiz ;3
width
3 0 1 3 0 0
5 0 1 12 15 0
1 2
5 1 i 1 2 £
Band- i ao ail ai2 a3 a4 ais ai6
width
17 3 3

3 0 - 3 5 —% 0 0 0
5 _19 _11 55 20 _5 1 _1

S 10 i i3 . % 0
5 1 ~ 500 1 3 S iz ~ 300 0

equations (8),(20) and (22) are modified by the mesh mapping

ﬂ
dx

_
&

d¢

- (23)

i

dv

T3 % = tkv. The same interior and boundary scheme are then

Thus the equation to be solved is
used in £.

4.3. Comparison

Tests based on the solution of the wave equation were carried out with N = 100. Before
discussing the results, however, it should be noted that different from the effective wavenumbers,
the accuracy of the solution of the wave equation is dependent of the number of intervals N apart
from the wavenumber. In this sense the results here are less general than those of the effective
wavenumber. Nevertheless, using the same N for both schemes allows us to compare their order
of convergence and resolution.

The results on uniform grids are discussed first. The Lo errors in the representation of the
solution of the wave problem using B-spline collocation and compact finite difference methods are
shown in figure 7. For B-spline collocation methods, the errors vary with k like k¥ *2. Notice that
in periodic domains, the convergence rates of the eigenvalue of the first derivative operator and
the eigenfunction are k**2 and k**+! respectively (see figures 4, 6 and table 3). For compact finite
difference schemes, the L, error varies with k like k2¥~1. This is consistent with the theoretical
convergence rate (figure 4 and table 3). However, the curve is not smooth as there are many
small wriggles on it. Apparently, the boundary condition and boundary schemes do not affect
their convergence rate of either scheme.

As mentioned before, changing N would affect the error curves. In particular, the error curves
shift vertically. This is because for both schemes, the local truncation error and hence the Ly
error have the form a(Az)*~! f{))(z), where o is a real constant and 7 is an integer ([23] and [31]).
One way to obtain a curve that is valid for all N is to plot error/N versus k/kmaqz. The resulting
curve would not shift as N changes except when the error is close to 1.
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FIG. 7. Lo error in the representation of the solution of the wave equation with wavenumber k on uniform

grids for matrix bandwidth (a}3, (b)5: , b-spline collocation; — — — —, compact finite difference.

Perhaps more important than the order of convergence is the resolution of the two schemes.
The well-resolved fraction of the wavenumber range for the solution of the wave equation is shown
in table 7. It can be seen that for tridiagonal schemes, the two have almost the same resolution.
For pentadiagonal schemes, compact finite difference has better resolution due to the higher order
of convergence.

Another issue is the effect of a non-uniform grid. The Lo errors in the representation of
the solution of the wave problem using the two numerical schemes on non-uniform grids are
shown in figure 8. Here, the wavenumber is normalized by the maximum wavenumber k4, =
K——Jﬂ—;, where Az, is the maximum grid spacing. Basically, both schemes maintain the same
convergence rate as in the case of uniform grids. Note that for the compact finite difference
schemes, the curves turn up at the lowest wave number and the cause is not clear. With regard
to the resolved fraction, table 8 indicates that the two tridiagonal schemes again have the same
resolution. (Note however that in non-uniform grids, B-spline collocation has elements outside
the three “main” diagonals in the interior.) For pentadiagonal schemes, compact finite difference
has better resolution.

The order of convergence of the two schemes suggests that the difference in resolution properties
between compact finite difference and B-spline collocation will become bigger as the matrix
bandwidth increases. However, the wriggles on the compact finite difference curves may decrease
its resolution. Also, comparing results in periodic domains (table 7 and table 4), it is found
that the resolution in finite domains is substantially lower. In particular, the error reaches 1 at
k/kmaz = 0.6 and then levels off.

Comparison of the numerical solution and the analytical solution as functions of z suggests
what happens at the plateau of the error curve. Before the error plateau, the numerical solution is
capturing the propagating wave, although the numerical and analytical solution are getting more
and more out of phase as z increases in the domain. This is expected as the effective wavenumber
is not exact. At the error plateau, the numerical solution cannot capture the propagating wave
at all. Small wriggles appear at the inflow boundary and gradually die away as z increases.
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FIG. 8. Lo error in the representation of the solution of the wave equation with wavenumber k on non-
uniform grids for matrix bandwidth ()3, (b)5: , b-spline collocation; — — — —, compact finite difference.

TABLE 7

Resolved fraction for the solution of the wave equation for uniform grid distribution

Bandwidth B-spline collocation compact finite difference
0% 1% 01% 10% 1% 0.1 %

3 025 015 0.10 024 0.15 0.09
5 040 030 0.22 0.45 0.34 0.27
TABLE 8

Resolved fraction for the solution of the wave equation for non-uniform grid distribution

Bandwidth B-spline collocation compact finite difference
0% 1% 01% 100% 1% 01 %

3 029 019 012 029 0.19 0.12

5 047 035 025 0.55 043 0.34
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5. HEAT EQUATION IN BOUNDED DOMAINS

In this section, the eigenvalue problem arising from the heat equation is solved using B-spline
collocation and compact finite difference methods. The problem is defined as

v =M for0<z <1, (24)

with some boundary conditions, the most common ones being the Dirichlet (v(0) = v(1) = 0)
and Neumann (v'(0) = v’(1) = 0) boundary conditions. In both cases, the eigenvalues are

M = — (k)2 (25)

where k is an integer. The corresponding eigenfunctions are ¥x(z) = sin(wkz) and Ux(x) =
cos(wkz) for Dirichlet and Neumann boundary conditions respectively.

5.1. B-spline Collocation Formulation
Discretizing with B-spline collocation method, we obtain the matrix equation AMa = Dsa,
where M is the mass and D» the second derivative operator matrix, and « the B-spline coefficient
vector for the eigenfunctions. For Dirichlet boundary conditions, vp = vy = 0. For Neumann
boundary conditions, vy and vy are set to zero.

5.2. Compact Finite Difference Formulation
Similar to the case of first derivative, the discretized derivative operators are derived from
equation (9) in the interior. Near the boundary, the symmetry breaks down and the corresponding
equation becomes

m+i N 1 3m+1—i )
jgo Qijv; = Bk FZO a;jv; for0<i<m—1, (26)
m+N—1 1 3m4+1—N-+i

JZ; ON—; jv}(,_j = -(—m ]_ZO an—; jUN—j for N>i>N-m+1

where m = "’T’l The coefficients in equation (26) are determined by matching the Taylor series
coefficients to one order less than the interior for tridiagonal schemes and to the same order of
the interior for pentadiagonal schemes (using boundary of the same order for tridiagonal schemes
gives rise to bad resolution for unknown reasons). The coefficients are shown in table 9 for the
two schemes. After discretization, a generalized eigenvalue problem AM2a = Dya is obtained,
where M, is the mass and D, the second derivative operator matrix, and a the eigenfunction.
The generalized eigenvalue problem can be solved with the appropriate boundary condition.

5.2.1. Boundary conditions

The Dirichlet boundary conditions are implemented by setting vo = vy = 0. For Neumann
boundary conditions, a one-sided explicit (i.e. not compact) finite difference scheme is used to set
vp = vjy = 0. Note that this makes the boundary scheme inconsistent with the interior scheme.
Also, a very long one-sided finite difference expression is required to maintain the same order as
the interior compact finite difference approximations.
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TABLE 9

Coefficients of the boundary formulation for the second derivative
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0 1
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0
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0
)
8.58850 x 10~}
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aio ail
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ai3

Qi4

(==

13 -27
2.15798 x 10* 1.03882 x 102
6.76347 x 107! 2.77175
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-2.92763 x 102
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-1

0

1.91514 x 102 -2.87907 x 10}

3.10065

5.39365 x 10!

Band-
width

aie

0 0
5.25826
1 -1.89438 x 10~2

(]
-7.32139 x 107!
4.74627 x 10™4

0
5.24768 x 10~?
0
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5.2.2. Non-uniform grids

To solve the problem on a non-uniform grid, a mesh mapping is used as in the wave equation.
Notice from the chain rule

(27)

i \de) @ TR &

Pv  (de\? v | B¢ dv
dx

The derivative in the non-uniform z coordinate is expressed in terms of those in the transformed
uniform ¢ coordinate. In the ¢ coordinate, there are finite difference representation of the deriva-
tive operators (expressed as M| D, and My !Dy. Note that M; and M, are different). The
finite difference approximation of the second derivative operator can hence be expressed as in
equation (27).

5.3. Comparison

Tests based on the eigenvalue problem are performed using N = 30. Results based on dif-
ferent N suggest that N has no influence on the order of convergence and minor influence on
the well-resolved fraction. The results obtained on uniform grids are presented first. The errors
in approximating the eigenvalues are shown in figure 9. Regardless of the boundary conditions,
B-spline collocation schemes have eigenvalue errors which decrease with wavenumber as k**!,
while compact finite difference has a convergence rate of k?*. Both of the above are consistent
with their corresponding convergence rates in periodic domains (see table 3). For compact finite
difference, however, the boundary conditions do have an effect on the magnitude of the error.
Neumann boundary conditions give larger errors in the eigenvalues, perhaps due to the boundary
approximation of v'. Also with the compact finite difference, there are some sharp decrease in
error at particular wavenumbers for reasons that are not clear. At high wavenumbers, wriggles
appear on the compact finite difference curves irrespective of the boundary conditions. With
regard to resolution, we refer to table 10, which gives the resolved fraction for the eigenvalues.
In many cases, compact finite difference schemes provide better resolution for the eigenvalues.
However, for pentadiagonal scheme, B-splines have better resolved fractions in many cases. How-
ever, due to the high convergence order of the compact finite difference, the more stringent the
tolerance for resolved fractions, the better the compact finite difference does.

The Lo errors of the eigenfunctions of the heat equation are shown in figure 10. For the
B-spline collocation schemes, the convergence rate for both Dirichlet and Neumann boundary
conditions appears to be k¥*!, but in the Neumann case this asymptotic rate is not attained
until £ < 0.06, with the resulting impact on resolution. For compact finite difference schemes, the
eigenfunctions have errors that converge at a rate approximately equal to k?*. However, with
Neumann boundary conditions, the errors are again larger. In fact, using Dirichlet boundary
condition, the tridiagonal schemes give a solution that is exact to round-off errors. It is also very
interesting to note that the pentadiagonal scheme curve shows two sharp decrease at v/—=X/kmas =
% and V=X kmaz = % At these two particular wavenumbers, the symmetries of the approximate
eigenfunctions make the point representations exact. Table 11 shows the resolved fraction of
eigenfunctions. Same as for the eigenvalues, compact finite difference schemes in general provide
better resolution for tridiagonal methods while B-splines do better for pentadiagonal schemes.

On non-uniform grids, the behavior of both B-spline collocation and compact finite difference
schemes is shown in figures 11, 12,tables 12 and 13. The errors in the eigenvalues of the heat
equation are shown in figure 11. B-spline collocation methods maintain the same convergence
rate of k¥*t! as in the case of uniform grids irrespective of the boundary conditions. Compact
finite difference schemes, however, show a degradation. Convergence rates of the eigenvalues is
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FIG. 9. Error of the eigenvalues of the heat equation with wavenumber k on uniform grids for matrix
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FIG. 10. Error of the eigenfunctions of the heat equation with wavenumber k on uniform grids for
matrix bandwidth (a)3, (b)5: , Dirichlet boundary condition; —~ ~ ~ —, Neumann boundary condition, both
for b-spline; — — —, Dirichlet boundary condition; —-—-—, Neumann boundary condition, both for compact

finite difference. For the compact finite difference, with bandwidth of 3 and Dirichlet boundary conditions, the
eigenfunctions are exact to round-off errors.
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Bandwidth Boundary

TABLE 10
Resolved fraction for the eigenvalues for uniform grid distribution
B-spline collocation compact finite
difference

condition

0% 1% 01% 10% 1% 01%

Dirichlet
Neumann
Dirichlet
Neumann

Cr ot W W

0.33 0.10 0.03 0.66 036 0.20
036 010 0.03 046 036 0.16
080 046 026 >0.76 050 0.40
0.76 046 0.26 0.43 0.36 0.23

TABLE 11
Resolved fraction for the eigenfunctions for uniform grid distribution
Bandwidth Boundary B-spline collocation compact finite
condition difference

0% 1% 01% 10% 1% 01%
3 Dirichlet 0.43 0.23 0.13 1.00 1.00 1.00
3 Neumann 0.40 0.13 0.06 023 016 0.10
5 Dirichlet 0.73 0.46 0.30 043 037 033
5 Neumann 0.93 0.56 0.33 0.36 020 0.16

25
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TABLE 12

Resolved fraction for the eigenvalues for non-uniform grid distribution

Bandwidth Boundary B-spline collocation compact finite
condition difference
0% 1% 01% 10% 1% 01%
3 Dirichlet 044 009 <005 073 044 0.19
3 Neumann 0.44 0.14 0.04 0.74 054 0.44
5 Dirichlet  0.92 0.53 0.29 0.73 049 034
5 Neumann 0.97 0.53 0.29 054 029 0.14

2 to 3 orders less than the corresponding rate of k* on uniform grids, with Neumann boundary
conditions giving worse convergence rates. Regarding resolution, compact finite difference pro-
vides better resolution for bandwidth w = 3 while B-spline collocation schemes provides better
resolution for bandwidth w = 5.

The L, errors of the eigenfunctions of the heat equation are shown in figure 12. B-spline
collocation schemes give convergence rates of k% approximately, with Dirichlet boundary condi-
tions giving slightly better solutions at low k. The degradation of resolution is not serious when
non-uniform grids are used instead of uniform ones. Compact finite difference schemes, however,
show quite serious degradation of convergence and resolution on non-uniform grids. They have
convergence rates of about k%, compared to k** on uniform grids. A very interesting result is
that B-spline and compact finite difference schemes appear to have the same convergence rates
on non-uniform grids. From table 13, it can also be seen that B-spline collocation methods have
better resolution properties on non-uniform grids.
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Error of the eigenfunctions of the heat equation with wavenumber k£ on non-uniform grids for

matrix bandwidth (a)3, (b)5: , Dirichlet boundary condition; — — — —, Neumann boundary condition, both
for b-spline; — — —, Dirichlet boundary condition; — - — - =, Neumann boundary condition, both for compact finite
difference.

TABLE 13

Resolved fraction for the eigenfunctions for non-uniform grid distribution

Bandwidth Boundary B-spline collocation compact finite
condition difference
0% 1% 01% 10% 1% 01%
3 Dirichlet 0.39 0.19  0.09 0.44 024 0.14
3 Neumann 039 014 0.04 029 009 <0.04
5 Dirichlet  0.72 043 0.29 039 029 0.24
5 Neumann 0.72 043 0.29 0.25 0.15 0.09
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6. DISCUSSION AND CONCLUSIONS

The results of this paper indicate that in many situations compact finite difference schemes
have better resolution and convergence properties than the other numerical methods tested.
The comparisons were done for schemes with the same matrix bandwidths, which we use as a
surrogate for computational cost. Furthermore, it was shown that finite element and B-spline
Galerkin methods had inferior resolution to compact finite difference and B-spline collocation.
There are several aspects of these results that deserve further discussion.

Regarding high-order finite element methods, it was noted that a reason for their relatively
poor performance in these tests was their low-order (Cp) continuity at the element boundaries
(i.e. knots), whereas the spline basis retains as high a degree of continuity as possible, given
the order of the piecewise polynomial representation. In essence, in spline methods, an increase
in the degree of the polynomials is used to increase the degree of continuity, while in Cp finite
elements, it is used to increase the number of degrees of freedom of the representation. The
results of the tests here suggest that the added degrees of freedom do not produce much in the
way of added accurately represented modes, resulting in poor resolution properties. However, the
improved resolution of splines is not without cost; that is, the representation of the polynomials
in each interval (element) is not isoparametric, a very convenient property of finite element
representations. Consequently, it is much easier to formulate multi-dimensional finite elements
on complex and/or unstructured grids, than it is to formulate spline methods.

It was also noted that piecewise polynomial Galerkin methods yielded poorer representations
of complex exponentials (the derivative eigenfunction) than collocation methods. This is true
for both finite element methods and spline methods. This is a curious result because Galerkin
approximations minimize Ls error for a given representation. The reason for the curious result

_is that we are comparing methods with the same matrix bandwidth. For example, a Galerkin
method that yields pentadiagonal matrices has cubic polynomials, whereas a pentadiagonal col-
location methods has quintic polynomials. The result is a fourth order accurate representation
for Galerkin and a sixth order accurate representation for collocation. However, there are other
reasons one might choose a Galerkin method, despite this shortcoming; for example, a Galerkin
method is trivially shown to be conservative.

The two methods discussed here with the best convergence and resolution properties are com-
pact finite difference and spline collocation, and the comparison between them includes 4 major
issues that must be traded off against the improved order of accuracy and in many cases better
resolution of the finite difference methods:

1. The generally superior convergence and resolution of compact finite difference compared to
B-spline collocation is simply due to the fact that in the finite difference case, the “mass matrix”
is not constrained to be the same for all derivatives. There may, however, be costs in code
complexity or computational effort in having different mass matrices, depending on the details
of the problem being solved.

2. Another difference is in the treatment near a boundary. In the finite difference case, special
difference schemes must be formulated near the boundary, and such boundary treatments can
cause difficulties. For the wave equation, a criterion for a good boundary treatment was developed
in section 4.2.1, and schemes that satisfy the criterion were found by imposing a formal order
of accuracy consistent with the interior scheme. However, consistent order of accuracy is a
necessary but not necessarily sufficient condition for the criterion to be satisfied, and directly
constructing schemes to satisfy the criterion is prohibitively cumbersome in all but the simplest
cases (e.g. the tridiagonal scheme). Thus we do not have a practical constructive prescription
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for boundary schemes that satisfy the criterion in section 4.2.1. In the heat equation problem,
the development of a similar criterion for good boundary schemes is not as obvious, so we have
an even less well defined procedure for the boundary treatment in this case. Finally, recall that
for the heat equation, with Neumann conditions, an approximation of the first derivative at the
boundary had to be devised, so the derivative boundary condition could be imposed. This was
essentially ad hoc, and was not inherently consistent with the remainder of the scheme. All of
these difficulties are obviated with the spline method, since there is no special treatment near
the boundary.

3. On a nonuniform mesh, the spline method can be used directly, without recourse to a
mapping to a domain with a uniform mesh, as we did for the finite difference case. Thus the
method can easily be applied to an arbitrary mesh, for which no analytic mapping is known.
Besides, the resulting approximations are simpler, with no explicit metric terms, and in the case
of approximating the second derivative, no first derivative term appears. Of course, one can
construct finite difference methods directly on a nonuniform mesh as well, but the process is
cumbersome, and generally yields schemes that are lower order than the uniform mesh schemes
(for the same matrix bandwidth).

4. In sections 4 and 5, the error associated with the spline collocation method was well-behaved
and consistent with the results of the Fourier analysis in Section 3. The same cannot be said for
the finite difference schemes. For them, the error spectra were more erratic, with a variety of
unexplained features. Furthermore, in at least one case (i.e. nonuniform mesh heat equation with
Neumann conditions), the convergence rates appeared to be the same as its spline counterpart,
inconsistent with the simple Fourier analysis in Section 3.

Thus, when using a high-order spline collocation scheme instead of compact finite difference
with the same bandwidth, one is trading away a potentially higher convergence rate and somewhat
better resolution in many cases for a more straightforward and robust formulation. And, as
suggested by the results of section 5, in complicated situations, there is no guarantee that the
finite difference method would actually yield the theoretical higher convergence rate.
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